基于新息自适应卡尔曼滤波地铁测速定位方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH-3

基金项目:

国家重点研发计划(2023YFB4301605-04)项目资助


A speed measurement and positioning method of metro based on innovation-based adaptive Kalman filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    城市轨道交通车辆的测速定位存在可用传感器较少,小半径曲线和大坡度变化线路多,运行工况变化频繁,实时性与精 度要求更高等问题。 提出了基于新息自适应卡尔曼滤波的测速定位方法,以无人驾驶地铁为研究对象,首先基于先验牵引制动 目标级位约束,将列车视为一维刚性均布质量模型,考虑列车经过等效变坡点的动力学行为,建立修正机动加速度的列车运动 模型。 然后基于新息自适应卡尔曼滤波实时估计与修正受到运行工况与线路情况变化影响的统计噪声。 最后以 3 种典型工况 的实车数据为例,基于 16 组动车轴速信息进行测速定位,并对比采用平均轴速法与无自适应估计噪声的常规卡尔曼滤波算法 下的 6 种精度评价指标,结果表明:采用该方法有效修正轮轨蠕滑引起的渐进型数据漂移,减少高速区高频噪声,速度误差均方 根为 0. 349 0 km·h -1 ,制动停车位置误差为 0. 491 3 m,具备较高的测速与定位精度;在高速区轴速存在 1. 5% 比例随机缺失工况 下,速度误差均方根可稳定在 0. 371 7 km·h -1左右,制动停车位置误差可稳定在 0. 042 0 m 左右,对高速区测量轴速缺失具备较 强鲁棒性;在列车滑行工况下,速度误差均方根为 0. 360 1 km·h -1 ,制动停车位置误差为 0. 310 5 m,对列车空转滑行具备较强鲁 棒性。 研究结果能够为无人驾驶地铁列车精确测速定位提供理论依据与工程参考。

    Abstract:

    There are many problems in the speed measurement and positioning of urban rail transit trains, such as fewer available sensors, more lines with small radius curves and large slopes, frequent changes in operating conditions, and higher real-time and accuracy requirements. In this article, a speed measurement and positioning method based on an innovation-based adaptive Kalman filter is proposed, taking the unmanned metro as the research object. Firstly, based on the prior traction or braking target level constraint, the train is regarded as a one-dimensional rigid uniform mass model and taken into account the dynamic behavior of the train passing through the equivalent grade change point. A train motion model with modified maneuver acceleration is formulated. Then, based on the innovation-based adaptive Kalman filter, the statistical noise affected by the change of operating and line conditions is estimated and modified in real-time. Finally, taking the real train data of 3 typical conditions as an example, the speed measurement and positioning are carried out based on 16 sets of motor axle speed information, comparing its six accuracy evaluation indicators with that of the average axle speed method and conventional Kalman filter algorithm without adaptive noise estimation. The results show that this method can effectively modify the progressive data drift caused by wheel-rail creep and reduce the high-frequency noise in the high-speed area. The root mean square of speed error is 0. 349 0 km·h -1 , and the braking position error is 0. 491 3 m. Under the condition that the axle speed in the high-speed zone has a random loss of 1. 5% , the root mean square of the speed error can be stabilized at about 0. 371 7 km·h -1 , and the braking position error can be stabilized at about 0. 042 0 m, which has strong robustness to the loss of axle speed in the high-speed zone. Under the condition of train sliding, the root mean square of speed error is 0. 360 1 km·h -1 , and the braking position error is 0. 310 5 m, which has strong robustness to train slipping or sliding. The research results can provide a theoretical basis and engineering reference for the accurate speed measurement and positioning of unmanned metros.

    参考文献
    相似文献
    引证文献
引用本文

万俊豪,左建勇,丁景贤,潘 宇.基于新息自适应卡尔曼滤波地铁测速定位方法[J].仪器仪表学报,2025,46(1):236-246

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码