一种基于小波包分解和特征分量动态优选的剩余电流动作保护方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH89 TM774

基金项目:

福建省自然科学基金(2021J01633)项目资助


A residual current operated protection method based on wavelet packet decomposition and dynamic optimization of characteristic components
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前剩余电流动作保护装置(RCDs)仅依靠固定阈值作为动作判据, 在参数配合整定不合理、谐波含量大和高频电弧 脉冲等因素的影响下, 存在拒动和误动的风险, 且无法有效辨识出真正的触电事件。 对此,提出了一种基于小波包分解和特 征分量动态优选的新型 RCD 动作判据, 可快速识别出常规接地故障、触电、电弧等多种类型的故障。 首先, 利用高阶统计量中 对信号冲击敏感的峭度值捕捉故障起始时刻, 并通过计算该时刻前后各一周波差分剩余电流信号的能量比, 以实时甄别异常状 态。 其次, 收集故障前一周波和故障启动后三周波的差分剩余电流信号进行小波包分解, 融合各节点分量的峭度值、小波包能量 比与样本熵特征为动态优选指标(DOI), 并结合各分量 DOI 的贡献度重构低频与高频信号, 以突出各故障类型在不同频段电流 波形中的故障特征信息。 最后, 提取不同重构信号的电气量特征, 透过双层链式规则实现故障精准分类。 该方法已在 RCD 样机 上进行验证, 实验结果表明, 其在低压交流配电网的串联电弧、接地电弧、触电故障以及常规接地故障检测中表现优异, 识别率 达到 97. 52% , 平均诊断时间为 79. 6 ms, 能够满足 RCDs 所要求的灵敏性和可靠性,有效提升了 RCDs 的实际应用价值。

    Abstract:

    Currently, residual current operated protective devices (RCDs) solely rely on a fixed threshold as the tripping criterion. As a result, under conditions such as improper parameter coordination, high harmonic content, and high-frequency arc pulses, there is a risk of failure to trip or unwanted tripping. Moreover, they cannot effectively distinguish true electrocution events. To address this issue, this paper proposes a novel RCD tripping criterion based on wavelet packet decomposition and dynamic feature component selection. This criterion can quickly identify various types of faults, including common ground faults, electrocution, and arcing faults. First, the fault onset moment is captured using kurtosis, a high-order statistical measure sensitive to signal impulses. The energy ratio of the differential residual current signal in each cycle before and after this moment is calculated to identify abnormal conditions in real-time. Second, the differential residual current signals from one cycle before the fault and three cycles after the fault initiation are collected for wavelet packet decomposition. The kurtosis, wavelet packet energy ratio, and sample entropy of each node component are combined to form a dynamic optimization index (DOI). The low-frequency and high-frequency signals are then reconstructed based on the contribution of each component′s DOI, highlighting the fault characteristics of different fault types in current waveforms across various frequency bands. Finally, electrical characteristics from the reconstructed signals are extracted, and fault classification is performed accurately through a two-level chain-rule approach. The proposed method has been validated on an RCD prototype. Experimental results show that it performs excellently in detecting series arcs, ground arcs, electric shock faults, and general grounding faults in low-voltage AC distribution networks. The recognition rate reaches 97. 52% , with an average diagnostic time of 79. 6 ms. This method meets the sensitivity and reliability requirements of RCDs, thereby significantly enhancing their practical application value.

    参考文献
    相似文献
    引证文献
引用本文

高 伟,陈渊隆,黄天富.一种基于小波包分解和特征分量动态优选的剩余电流动作保护方法[J].仪器仪表学报,2025,46(1):311-323

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码