基于M估计的自旋载体自适应矢量跟踪环路设计
DOI:
CSTR:
作者:
作者单位:

东南大学仪器科学与工程学院南京210096

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家自然科学基金(61873064)、江苏省重点研发计划(BE2022139)、无锡市科技发展资金(N20221003)项目资助


Design of adaptive vector tracking loop in spinning vehicle based on M-estimation
Author:
Affiliation:

School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对自旋弹体在旋转状态下难以实现稳定跟踪卫星信号和高精度导航定位问题,构建了自旋信号模型,提出了一种基于M估计的自适应矢量跟踪环路设计。在传统跟踪环路的基础上,构建基于卡尔曼滤波+扩展卡尔曼滤波(KF+EKF)的级联式矢量跟踪环路,将耦合各通道信号的观测量作为估计器建立量测方程,滤波结果用于基于带宽计算和M估计故障检测的导航滤波器定位解算,同时将导航结果反馈至载波NCO和伪码NCO,实现闭环控制。半物理仿真实验表明,相比于传统跟踪环路,所提出的矢量跟踪环路的三维空间位置误差提升67.6%,速度误差提升67.8%,有效提高了自旋载体导航的稳定跟踪和精确定位。

    Abstract:

    To solve the problem of unstable tracking satellite signals and inaccurate navigation positioning of the spinning vehicle in the rotating state, a spinning signal model is constructed and an adaptive vector tracking loop based on M-estimation is proposed. On the basis of the traditional tracking loop, a cascade vector tracking loop based on KF+EKF is constructed. The filter is realized by coupling the observed quantities of each signal channel and the output of the tracking loop is used for the bandwidth calculation and the fault detection of the M-estimation to realize the navigation solutions. Simultaneously, the navigation results are fed back to the carrier NCO and code NCO to realize the closed-loop control. The semi physical simulation results show that the proposed vector tracking loop reduces the position error by 67.6% and the velocity error by 67.8% in three-dimensional space compared to the traditional tracking loop. This effectively enhances the stability of signal tracking and the accuracy of navigation positioning for spinning vehicle navigation modules.

    参考文献
    相似文献
    引证文献
引用本文

陈熙源,王月彤,高宁.基于M估计的自旋载体自适应矢量跟踪环路设计[J].仪器仪表学报,2024,45(12):319-328

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-04
  • 出版日期:
文章二维码