锂离子电池极片表面缺陷检测方法研究进展
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH89

基金项目:

合肥市自然科学基金项目(2023042)、安徽省重点研发计划项目(2023z04020004)资助


Research progress on defect detection methods for electrode surface of lithium-ion battery
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    极片作为锂离子电池的重要组件,在涂覆、辊压等环节中,表面容易产生划痕、露箔等缺陷,这些缺陷会严重影响电池的 质量和使用寿命,从而使得电池极片表面缺陷检测和管控工序是锂离子电池生产过程中不可缺少的工艺环节。 首先对锂离子 电池极片的生产工艺进行介绍,并对生产过程中可能产生极片表面缺陷的原因和缺陷种类进行分析;然后阐述了用机器视觉代 替人工对极片进行自动化检测的极片表面缺陷识别方法,主要介绍了传统机器视觉缺陷检测方法的原理以及优缺点,并深入分 析了深度学习在极片表面缺陷检测领域中应用的原理和流程,同时对目标检测算法中的单、双阶段算法在锂离子电池极片表面 缺陷检测中的应用进行重点分析与比较;最后对基于深度学习的机器视觉检测方法在锂离子电池极片表面缺陷检测中的未来 发展方向进行展望,为该领域的研究人员提供更多参考。 总的来说,极片表面缺陷检测技术的发展不仅依赖于工业相机等硬件 设备的技术突破,更需要软件算法的不断优化和创新,软件和硬件的协同工作才能在保证检测精度的同时,提高检测效率和降 低检测成本,进一步推动锂离子电池产业的高质量发展。

    Abstract:

    Electrodes are critical components of lithium-ion batteries, and during manufacturing processes like coating and rolling, their surfaces are susceptible to defects such as scratches and foil exposure. These defects can significantly impact the quality and service life of the batteries. Consequently, defect detection and control procedures for battery electrodes are essential steps in lithium-ion battery production. This article begins by outlining the production process of lithium-ion battery electrodes and analyzing the potential causes and types of surface defects that can occur during manufacturing. Next, it discusses the use of machine vision for surface defect identification, replacing manual labor with automated detection. The article reviews the principles, advantages, and limitations of traditional machine vision defect detection methods. It then delves into the application of deep learning for electrode surface defect detection, focusing on the principles and procedures involved. Particular attention is given to comparing one-stage and two-stage algorithms in target detection for lithium-ion battery electrode defect detection. Finally, the article predicts future developments in machine vision detection methods based on deep learning for surface defect detection of lithium-ion battery electrodes, offering valuable insights for researchers in this field. The advancement of electrode surface defect detection technology depends not only on hardware innovations, such as industrial cameras, but also on continuous optimization and innovation of software algorithms. The synergy between software and hardware can enhance detection accuracy, improve efficiency, reduce costs, and drive the lithium-ion battery production industry toward high-quality development.

    参考文献
    相似文献
    引证文献
引用本文

李博文,杨续来,葛肖尽,周 帆,李渡阳.锂离子电池极片表面缺陷检测方法研究进展[J].仪器仪表学报,2025,46(1):125-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码