基于一致损失生成对抗网络的冷水机组故障诊断
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

北京市自然科学基金(4222041)、北京市教育委员会科研计划(KM202410005034)项目资助


Fault diagnosis of chillers based on consistency loss generative adversarial network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    冷水机组是供暖通风与空气调节系统的重要组成部分,当冷水机组发生故障时将造成能源浪费甚至安全事故。 因此, 针对冷水机组的故障诊断对于暖通风与空气调节等系统至关重要。 基于数据驱动的故障诊断方法依赖大量历史数据,但带标 签的故障数据往往难以收集,导致模型的诊断准确率下降。 为此,提出了一种基于一致损失生成对抗网络(CLGAN)的故障诊 断方法。 首先,利用少量带标签样本和大量无标签样本训练 CLGAN,并生成故障数据;然后,利用生成数据与历史数据构建一 个包含各类故障的平衡数据集;最后,利用该数据集训练故障分类器并对冷水机组进行实时诊断。 CLGAN 通过在判别器中引 入一致性损失函数,能够有效利用无标签数据辅助模型训练,提升了数据利用率。 同时,CLGAN 迫使生成器在多个尺度上满足 判别器的要求,这种多维度的反馈机制使得模型在面对扰动时,依然能生成高质量的样本,进而提高故障诊断的准确性和鲁棒 性。 基于 ASHRAE 和 HY-31C 数据集的实验结果表明,在各类别仅有 5 个带标签样本的情况下,CLGAN 分别获得了 92. 8% 和 95. 9% 的故障诊断准确率,展现了良好的故障诊断性能。 此外,在噪声和跨工况实验中,CLGAN 相比于其他对比方法也展现出 了良好的鲁棒性和泛化性。

    Abstract:

    A chiller is a critical component of heating, ventilation, and air conditioning (HVAC) systems. Faults in chillers can lead to energy waste and even safety incidents. Therefore, fault diagnosis for chillers is essential for HVAC systems. Data-driven fault diagnosis methods rely on large amounts of historical data, but labeled fault data is often difficult to collect, resulting in reduced diagnostic accuracy of models. To address this issue, this paper proposes a fault diagnosis method based on a consistency loss generative adversarial network (CLGAN). First, CLGAN is trained with a small number of labeled samples and a large amount of unlabeled data to generate realistic fault samples. Next, a balanced dataset containing multiple fault categories is constructed by combining both generated and historical data. Finally, a fault classifier is trained on this balanced dataset to perform real-time fault diagnosis. By introducing a consistency loss function into the discriminator, CLGAN effectively leverages unlabeled data, increasing data utilization. Meanwhile, the generator is guided at multiple scales to meet the discriminator′s requirements, enabling the model to produce high-quality samples even under various disturbances and thus enhancing diagnostic accuracy and robustness. Experimental results on the ASHRAE and HY-31C datasets demonstrate that, with only five labeled samples per class, CLGAN achieves fault diagnosis accuracies of 92. 8% and 95. 9% , respectively, illustrating its excellent performance. Moreover, in noise and cross-condition experiments, CLGAN shows superior robustness and generalization compared with other methods.

    参考文献
    相似文献
    引证文献
引用本文

高学金,吴浩宁,高慧慧,齐咏生.基于一致损失生成对抗网络的冷水机组故障诊断[J].仪器仪表学报,2025,46(1):285-297

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码