多通道振动信号与滑油屑末信息融合的滚动轴承状态监控方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133

基金项目:

辽宁省教育厅基本科研项目(JYTMS20230249)资助


Multi-channel vibration signal and debris particle information fusion for rolling bearing condition monitoring method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对单一检测手段难以对航空发动机主轴承进行状态监测以及准确诊断故障的问题,提出多通道振动信号与滑油屑末 信息融合的滚动轴承状态监控方法。 该方法首先通过建立的多通道振动信息加权融合模型将多个振动传感器测得的数据进行 加权融合,然后利用 CEEMDAN 对融合后的信号进行分解,根据峭度-相关系数筛选准则筛选出强冲击性分量进行重构,得到一 个富含轴承故障特征信息的振动信号;再选用总有效值作为时域特征参数、提出特征能量作为频域特征参数;通过选取隶属度 函数,根据实际情况及专家经验定义模糊推理规则,基于模糊推理理论将总有效值和特征能量进行第 1 次融合为振动信息参数 F1;然后将测得的滑油金属屑末数作为剥落屑末信息参数 F2,再基于模糊推理理论将 F1 与 F2 进行第 2 次融合分析;最后监测 滚动轴承状态并诊断轴承故障。 开展航空发动机主轴承剥落扩展试验,安装振动及滑油屑末检测系统,同步采集轴承剥落全程 的振动及滑油屑末信息,并应用所提出方法对所测得数据进行分析。 结果表明,多通道振动信号与滑油屑末信息融合的滚动轴 承状态监控方法可进行故障特征综合分析并有效判别轴承运行状态。

    Abstract:

    In response to the challenges of monitoring and accurately diagnosing the state of main bearings in aircraft engines using a single detection method, a method for rolling bearing condition monitoring is proposed, integrating multi-channel vibration signals with oil debris particle information. This approach initially utilizes a weighted fusion model for multi-channel vibration information to combine data obtained from multiple vibration sensors. Subsequently, the fused signal is decomposed using CEEMDAN, and components with strong impact characteristics are selected based on kurtosis-correlation coefficient filtering criteria, leading to the reconstruction of a vibration signal rich in bearing fault characteristic information. Time-domain features, using the total effective value, and frequencydomain features, employing feature energy, are then extracted as characteristic parameters. Through the selection of membership functions and the definition of fuzzy inference rules based on practical considerations and expert experience, fuzzy inference theory is applied to fuse the total effective value and feature energy into the first-level fused vibration information parameter, denoted as F1. The obtained oil metal debris particle count is utilized as the information parameter F2 for debris, which is further analyzed through a secondlevel fusion using fuzzy inference theory. Finally, the rolling bearing status is monitored, and bearing faults are diagnosed. Experimental tests involving the shedding and expansion of main bearing debris in aircraft engines were conducted. A detection system was installed to simultaneously collect vibration and oil debris particle information throughout the entire bearing shedding process. The proposed method was applied to analyze the collected data. Results indicate that the multi-channel vibration signal and oil debris particle information fusion method for rolling bearing condition monitoring enables comprehensive analysis of fault characteristics and effective discrimination of bearing operational states.

    参考文献
    相似文献
    引证文献
引用本文

栾孝驰,白 天,赵俊豪,沙云东,雷志浩.多通道振动信号与滑油屑末信息融合的滚动轴承状态监控方法[J].仪器仪表学报,2025,46(1):298-310

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码