基于望远系统的光学-神经网络联合优化超分辨成像方法
DOI:
CSTR:
作者:
作者单位:

1.长春理工大学空间光电技术研究所长春130022; 2.中国空间技术研究院(CAST)遥感卫星总体部北京100094

作者简介:

通讯作者:

中图分类号:

O439TH743

基金项目:

国家自然科学基金(62375027,62127813)、重庆市自然科学基金(CSTB2023NSCQMSX0504)、吉林省自然科学基金(YDZJ202201ZYTS411,222621JC010498735)、吉林省教育厅资助(JJKH20240920KJ)项目资助


A joint optimization superresolution imaging method of opticalneural network based on a telescopic system
Author:
Affiliation:

1.Changchun University of Science and Technology Institute of Space Ophotoelectronics Technology, Changchun, 130022, China; 2.The Institute of Remote Sensing Satellites, China Academy of Space Technology(CAST), Beijing, 100094, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光学望远镜是获取远距离物体光学信息的重要工具,分辨率是衡量其观测物体细节能力的重要指标。传统提高分辨率的方法是建造更大口径的望远镜,这导致建造和维护成本大幅增加。本文提出一种光学-神经网络联合优化方法,将望远系统的点扩散函数与图像重建网络联合训练,并在光路引入相位掩模重构训练得到的点扩散函数,实现两者协同优化,提高观测图像的分辨率。构建一种轻量级的生成对抗网络,其重建速度远高于现有几种无监督网络。采用双鉴别器架构提高网络提取细节特征的能力,设计的级联残差块充分利用各级提取的特征信息,提高了重建效率。仿真和验证实验结果表明,与单纯的深度学习方法相比,该方法重建的超分辨率图像细节丰富,星点和条纹更容易分辨。光学望远镜是获取远距离物体光学信息的重要工具,在天文观测、遥感和光学监视领域具有广泛的应用。分辨率是衡量望远镜观测物体细节能力的重要指标,传统提高望远镜分辨率的方法是建造更大口径的望远镜,这导致建造和维护成本大幅增加。本文提出一种光学-神经网络联合优化方法,通过将望远系统的点扩散函数等效为一个单核卷积层,集成到图像超分辨重建网络前端进行联合训练,并在光路引入相位掩模重构训练得到的点扩散函数,从而实现两者协同优化,有效提高了观测图像的分辨率。本文还构建一种高性能的生成对抗网络,其训练参数小于现有几种无监督网络,重建速度远高于现有几种无监督网络。此网络采用双鉴别器架构提高了网络提取细节特征的能力,设计的级联残差块充分利用了各级提取的特征信息,扩展了信息的传播路径,提高了重建效率。仿真结果表明,本文与单纯的深度学习方法相比,联合优化方法重建的超分辨率图像PSNR和SSIM在仿真数据集中分别提高了3.98和0.06,图像细节丰富,容易分辨。验证实验表明,本文的联合优化方法重建的条纹图像对比度最高,更容易分辨。

    Abstract:

    Optical telescope is an important tool to obtain optical information of distant objects, and has wide application in astronomical observation, remote sensing, and optical surveillance. Resolution is an important indicator of a telescope's ability to observe objects in detail, and the traditional way to improve the resolution of a telescope is to build a larger aperture telescope, which leads to a significant increase in construction and maintenance costs. In this paper, an optic-neural network joint optimization method is proposed. The point diffusion function of the telescopic system is equivalent to a single-core convolution layer, which is integrated into the front end of the image super-resolution reconstruction network for joint training, and the point diffusion function obtained by phase mask reconstruction training is introduced into the optical path, so as to achieve collaborative optimization of the two, and effectively improve the resolution of the observed image. In this paper, a high-performance generative adversarial network is constructed, whose training parameters are smaller than the existing unsupervised networks, and the reconstruction speed is much faster than the existing unsupervised networks. This network adopts double discriminator architecture to improve the ability to extract detailed features. The designed cascade residuals make full use of the extracted feature information at all levels, expand the information propagation path, and improve the reconstruction efficiency. The simulation results show that compared with the simple deep learning method, the PSNR and SSIM of the super-resolution image reconstructed by the joint optimization method in this paper are increased by 3.98 and 0.06 respectively in the simulation data set, and the image details are rich and easy to distinguish. Verification experiments show that the fringe image reconstructed by the joint optimization method in this paper has the highest contrast and is easier to distinguish.

    参考文献
    相似文献
    引证文献
引用本文

孙友红,张涛,刘嘉楠,刘建华,王超.基于望远系统的光学-神经网络联合优化超分辨成像方法[J].仪器仪表学报,2024,45(12):12-23

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-04
  • 出版日期:
文章二维码