基于YOLOv8的油气管道漏磁检测缺陷智能识别技术研究
DOI:
CSTR:
作者:
作者单位:

中油管道检测技术有限责任公司廊坊065000

作者简介:

通讯作者:

中图分类号:

TH878TP391.41

基金项目:

中国石油管道局工程有限公司科技开发课题(2023-13)项目


Research on intelligent defect recognition in oil and gas pipeline magnetic flux leakage detection based on YOLOv8
Author:
Affiliation:

China Petroleum Pipeline Inspection Technologies Co, Ltd, Langfang 065000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    油气管道漏磁检测是评估管道完整性的重要手段,但传统人工分析方法存在效率低、误判率高等问题,故提出了一种基于YOLOv8深度学习算法的油气管道漏磁检测智能识别方法,实现管道缺陷的自动化检测。研究创新性地构建了一套基于人工标注经验的自动化训练数据集生成方法,有效继承了专家领域知识,显著提升了数据集构建效率。通过对漏磁信号进行预处理和图像增强,将原始数据转换为标准化灰度图像,并采用自适应图像增强策略,有效提升了图像质量和目标特征的可区分性。从实际工程项目中采集并生成36 098张高质量漏磁图像,其中3 403张含缺陷图像用作训练集。缺陷在管道轴向-周向平面上呈现相对均匀分布,在焊缝位置存在局部高密度区域,尺寸主要集中在较小范围内并呈现长尾分布特征,为模型训练提供了扎实的数据基础。训练过程中,模型的精确率P和召回率R指标分别稳定在0.66和0.60,mAP@0.5指标稳定于0.57,而mAP@[0.5∶0.95]达到0.27。在实际工程数据测试中,模型的精确率、召回率和F1分数分别达到63.17%、65.24%和64.19%,验证了YOLOv8模型在管道检测任务中的可行性和优异的检测性能。该方法不仅显著提高了检测效率,降低了人工成本,而且有效避免了人为因素导致的判断偏差。研究结果表明,基于深度学习的智能识别方法在油气管道漏磁检测领域具有广阔的应用前景。

    Abstract:

    Magnetic flux leakage detection in oil and gas pipelines is a crucial method for evaluating pipeline integrity. However, traditional manual analysis methods suffer from low efficiency and high false detection rates. This study proposes an intelligent recognition method for pipeline magnetic flux leakage detection based on the YOLOv8 deep learning algorithm, achieving automated detection of pipeline defects. The research innovatively constructs an automated training dataset generation method based on manual annotation experience, effectively inheriting expert domain knowledge, and significantly improving dataset construction efficiency. Through preprocessing and image enhancement of magnetic flux leakage signals, raw data are converted into standardized grayscale images, and an adaptive image enhancement strategy is adopted to effectively improve image quality and feature distinguishability. In this study, a dataset of 36,098 high-quality magnetic flux leakage images is collected and generated from real-world engineering projects, including 3,403 defect-containing images used as the training set. The defects exhibit a relatively uniform distribution in the axial-circumferential plane of the pipeline, with localized high-density regions near weld seams. The defect sizes are predominantly within a smaller range, exhibiting a long-tailed distribution, providing a solid data foundation for model training. During training, the model′s precision and recall metrics stabilized at 0.66 and 0.60, respectively, with an mAP@0.5 of 0.57 and an mAP@[0.5:0.95] of 0.27. Testing on real-world engineering data achieves a precision of 63.17%, recall of 65.24%, and an F1 score of 64.19%. The feasibility and excellent detection performance of the YOLOv8 model for pipeline inspection tasks are verified. This method not only significantly improves detection efficiency and reduces manual costs but also effectively avoids judgment bias caused by human factors. The results show that deep learning-based intelligent recognition methods have broad application prospects in pipeline magnetic flux leakage detection.

    参考文献
    相似文献
    引证文献
引用本文

李春晖,吕岩,孟祥来,李玲慧,蒲晓晨.基于YOLOv8的油气管道漏磁检测缺陷智能识别技术研究[J].仪器仪表学报,2025,46(2):247-254

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-28
  • 出版日期:
文章二维码