基于张量分解与宽度学习系统的MMC开关管开路故障诊断与定位
DOI:
CSTR:
作者:
作者单位:

1.中南民族大学计算机科学学院武汉430074; 2.华中农业大学信息学院武汉430070

作者简介:

通讯作者:

中图分类号:

TH183.3TM46

基金项目:

国家自然科学基金项目(61903384)、湖北省自然科学基金面上项目(2025AFB741)、湖北省科技计划项目(2024BAB070)资助


Diagnosis and location of switch open-circuit faults in modular multilevel converter based on tensor decomposition and broad learning system
Author:
Affiliation:

1.School of Computer Science, SouthCentral Minzu University, Wuhan 430074, China; 2.College of Informatics, Huazhong Agricultural University, Wuhan 430070, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    模块化多电平换流器(MMC)是柔性直流输配电系统的核心换流设备,因其采用大量子模块级联的拓扑结构,面临着开关器件数量庞大带来的可靠性挑战,其故障发生率较高。传统MMC开关管开路故障诊断方法存在需要额外传感器、阈值易受干扰等问题。故提出了一种基于张量特征提取和二维宽度学习系统的MMC开关管开路故障诊断与定位方法,实现了MMC开关管开路故障的快速高精度诊断与定位。该方法根据MMC结构,采用子模块电容电压数据构造三阶张量,提高了对MMC多通道信号的处理效率;通过Tucker分解将故障类型分类与故障位置识别任务进行拆分,并提取相应的张量特征,简化了机器学习难度;针对各子任务的张量特征,训练了对应的基于二维宽度学习系统的子分类器,该分类器利用双线性变换在减少参数的同时保留了特征的空间结构,最后综合各个子分类器的输出结果实现了故障诊断和定位。该方法无须额外传感器与经验阈值,同时极大减少了机器学习模型复杂度,从而提高故障诊断和定位的精度与效率,尤其在处理多故障时具有明显优势。仿真和实验表明故障诊断与定位时间<15 ms,准确率高于98.5%,验证了该方法的优越性与有效性。

    Abstract:

    The modular multilevel converter (MMC) is a key power conversion component in flexible DC transmission and distribution systems. However, its cascaded submodule topology, which incorporates a large number of switching devices, presents reliability challenges and contributes to a higher failure rate. Traditional open-circuit fault diagnosis methods for MMC switching devices often rely on additional sensors and are susceptible to interference due to threshold sensitivity. To address these limitations, this paper introduces a novel open-circuit fault diagnosis and localization approach based on tensor feature extraction and a two-dimensional broad learning system (2D-BLS), enabling fast and highly accurate fault identification.The proposed method constructs a third-order tensor from submodule capacitor voltage data to efficiently handle multi-channel MMC signals. Through Tucker decomposition, the method separates fault-type classification from fault-location identification while extracting meaningful tensor features. Each subtask′s tensor features are then processed using dedicated sub-classifiers built on the 2D-BLS framework. The 2D-BLS employs a bilinear transformation to maintain structural information while significantly reducing the number of parameters. The outputs of all sub-classifiers are subsequently fused to accomplish fault diagnosis and localization.This approach eliminates the need for additional sensors and empirical thresholds, reduces the model′s class complexity, and enhances both diagnostic accuracy and computational efficiency. It is particularly well-suited for handling multiple open-circuit faults in switching devices. Simulation and experimental results confirm that the proposed method achieves a diagnosis and localization time of less than 15 ms with an accuracy exceeding 98.5%, demonstrating its effectiveness and superiority.

    参考文献
    相似文献
    引证文献
引用本文

耿想,何顺帆,朱容波,段启豪,田微.基于张量分解与宽度学习系统的MMC开关管开路故障诊断与定位[J].仪器仪表学报,2025,46(4):150-162

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期:
文章二维码