基于非高斯模型调制信号双谱的行星轴承故障特征提取
DOI:
CSTR:
作者:
作者单位:

天津理工大学机械工程学院天津300387

作者简介:

通讯作者:

中图分类号:

TH133.33

基金项目:

天津市自然科学基金项目(23JCQNJC00550)资助


Fault feature extraction for planet bearing based on non-Gaussian model modulation signal bispectrum
Author:
Affiliation:

School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300387, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    调制信号双谱分析从共振频带中通过抑制随机噪声和干扰成分实现故障特征分量解调,作为行星轴承故障诊断中最为广泛应用的共振解调方法之一。此外,调制信号双谱具有保留相位信息并检测二次相位耦合信号和高斯噪声去除的特点,因此,检测振幅和相位调制的能力对于调制信号双谱的故障特征提取极其重要。然而,调制信号双谱无法高效地处理非高斯噪声。针对调制信号双谱难以分析非高斯噪声的问题,提出了基于非高斯噪声抑制的自回归模型滤波器,以改善其在行星轴承故障诊断与监测的性能。自回归模型滤波器表示时间变化的过程,其在捕获行星轴承数据故障特征信息方面非常有效,且被利用在消除非高斯噪声方面具有卓越的能力。因此,自回归模型滤波器被视为消除非高斯噪声的分析模型,并通过采用峭度准则明确非高斯噪声分析模型的阶数。最后,利用调制信号双谱处理非高斯噪声分析模型信号以去除高斯噪声和分解耦合调制成分,以准确地辨识行星轴承故障频率成分。通过对仿真信号和实验数据分析结果表明,非高斯模型调制信号双谱比快速谱峭度和调制信号双谱更能精确地诊断行星轴承故障特征。

    Abstract:

    As one of the most widely used resonance demodulation methods in planetary bearing fault diagnosis technology, modulation signal bispectrum demodulates the fault feature information from the resonance band via inhibiting the background noise and interference frequencies. In addition, modulation signal bispectrum has the characteristics of preserving phase information, detecting secondary phase coupling signals, and removing Gaussian noise. Therefore, the ability to detect amplitude and phase modulation is crucial for fault feature extraction of modulation signal bispectrum. To address the challenge of analyzing non-Gaussian noise in modulation signal bispectrum, an autoregressive model filter based on non-Gaussian noise suppression is proposed to improve its performance in planetary bearing fault diagnosis and monitoring. Autoregressive model filters effectively capture key features of data series and are applied with superior performance in removing non-Gaussian noise. Therefore, the autoregressive model is considered as a pre-filter process unit to reduce non-Gaussian noise in the original signal to improve the accuracy of modulation signal bispectrum. The order of the autoregressive model is determined adaptively using an indicator called kurtosis, further improving the effectiveness of the autoregressive model. Finally, the non-Gaussian noise analysis model signal is processed using modulation signal bispectrum to remove Gaussian noise and decompose coupled modulation components, thereby accurately identifying the frequency components of planetary bearing faults. The simulation and experimental analysis results demonstrate that non-Gaussian model modulation signal bispectrum achieves higher accuracy in diagnosing planetary bearing fault characteristics than fast kurtogram and modulation signal bispectrum.

    参考文献
    相似文献
    引证文献
引用本文

郭俊超.基于非高斯模型调制信号双谱的行星轴承故障特征提取[J].仪器仪表学报,2025,46(2):43-50

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-28
  • 出版日期:
文章二维码