基于蚁群算法与人工势场法融合的移动机器人路径规则
DOI:
CSTR:
作者:
作者单位:

厦门理工学院机械与汽车工程学院厦门361024

作者简介:

通讯作者:

中图分类号:

TP242.6TH166

基金项目:

国家重点研发计划(2023YFB3406505)项目资助


Mobile robot path planning based on the fusion of ant colony algorithm and artificial potential field method
Author:
Affiliation:

School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决移动机器人在复杂环境和动态障碍物条件下规划出的全局路径质量差以及局部路径易于陷入局部最优等问题,提出一种基于蚁群算法与人工势场法的融合算法。首先,针对传统蚁群算法全局搜索能力差,收敛速度慢等问题,优化了其搜索方式,构建了新的信息素更新规则,引入了修正后的启发式信息,设计了路径节点优化策略以提高其路径质量和搜索效率;其次,通过将移动机器人到目标点的相对距离加入到斥力势场函数中以及设置子目标点来解决传统人工势场法存在目标不可达和局部极小值的问题;最后,融合改进后的蚁群算法和改进后的人工势场法来提高融合算法在复杂动态和静态环境下的路径规划性能。通过仿真分析选取改进人工势场法的参数组合。仿真结果表明:改进蚁群算法较传统蚁群算法最优路径缩短26.23%,路径转折点减少60.00%,搜索效率提升73.75%;改进人工势场法有效地解决了传统人工势场法的局限性同时提高了其局部避障能力;融合算法在保持贴合全局最优路径的前提下能够规划出无碰撞平滑路径。实验结果表明:在实际场景中,与现有传统算法相比,改进蚁群算法规划出的路径更短;在Gazebo物理仿真平台中,融合算法能够对静态障碍物进行有效避障,验证了其理论可行性。

    Abstract:

    To solve the problems of poor global path quality and the tendency of local paths to fall into local optimality when mobile robots plan in complex environments and dynamic obstacles, a fusion algorithm based on the ant colony algorithm and the artificial potential field method is proposed. Firstly, in view of the poor global search ability and slow convergence speed of the traditional ant colony algorithm, its search method is optimized, a new pheromone update rule is constructed, the revised heuristic information is introduced, and a path node optimization strategy is designed to improve its path quality and search efficiency. Secondly, the problem of unreachable target and local minimum in the traditional artificial potential field method is solved by adding the relative distance from the mobile robot to the target point into the repulsive potential field function and setting sub-target points. Finally, the improved ant colony algorithm and the improved artificial potential field method are integrated to improve the path planning performance of the fusion algorithm in complex dynamic and static environments. The parameter combination of the improved artificial potential field method is selected through simulation analysis. Compared with the traditional ant colony algorithm, the simulation results show that, the optimal path of the improved ant colony algorithm is shortened by 26.23%, the turning points of the path are reduced by 60.00%, and the search efficiency is improved by 73.75%. The improved artificial potential field method effectively solves the limitations of the traditional artificial potential field method and improves its local obstacle avoidance capability. The fusion algorithm can plan a collision-free and smooth path while maintaining compliance with the global optimal path. In actual scenarios, the experimental results show that: the path planned by the improved ant colony algorithm is shorter than that of the existing traditional algorithm. In the Gazebo physical simulation platform, the fusion algorithm can effectively avoid static obstacles, verifying its theoretical feasibility.

    参考文献
    相似文献
    引证文献
引用本文

邓冬冬,许建民,孟寒,杨炜.基于蚁群算法与人工势场法融合的移动机器人路径规则[J].仪器仪表学报,2025,46(2):1-16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-28
  • 出版日期:
文章二维码