基于空间运动特性的断路器健康状态识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM561 TH165. 3

基金项目:

河北省中央引导地方科技发展资金 ( 246Z2101G)、河北省自然科学基金创新群体 ( E2024202298)、河北省自然科学基金(E2021202136)项目资助


Circuit breaker health state identification based on spatial motion characteristics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    考虑到空间运动特性差异对机械性能退化的体现更为直接,且振动信号蕴含丰富的机械状态信息,提出一种利用振动 信号对空间运动特性进行表征的断路器健康状态识别方法。 首先,利用位移信号获取能够反映关键机构机械状态的运动特性 参数;其次,采用 AAF-AAKR 模型构建运动特性健康指标;然后,基于关键动作阶段三维振动信号特点提取多域特征参数,选取 相关性较高的特征进行层次聚类并计算与运动特性的互信息,得到对运动特性表征能力强的关键退化特征矢量;最后,将退化 特征矢量作为输入,运动特性健康指标作为输出,构建 1D-CNN 性能退化回归模型,以实现储能机构健康状态识别。 实例验证 表明,三维振动信号相对于一维振动信号对运动健康指标的拟合效果更好,回归分析 RMSE 为 0. 018 6,MAE 为 0. 011 2,可精准 地识别断路器的健康状态。

    Abstract:

    Considering that the difference in spatial motion characteristics is more direct to the mechanical property degradation, and the vibration signal contains rich mechanical state information, a circuit breaker health state identification method is proposed using vibration signals to characterize spatial motion properties. First, the displacement signal is used to obtain the motion characteristic parameters that can reflect the mechanical state of the key mechanism. Secondly, the AFF-AAKR is utilized to construct motion-characteristic health indicators offline. Then, multi-domain feature parameters are extracted based on the characteristics of the three-dimensional vibration signal in the key action phase. The features with higher correlation are selected for hierarchical clustering and the mutual information with the motion characteristics is calculated to achieve the key degradation feature vectors with strong characterization ability of the motion characteristics. Finally, the degradation feature vectors are used as the input and the health indicator of motion characteristics is used as the output to construct a 1D-CNN performance degradation regression model. In this way, the health state identification of the energy storage mechanism is realized. The example validation shows that the three-dimensional vibration signal fits the motion health indicator better than the one-dimensional vibration signal, and the regression analysis RMSE is 0. 018 6 and MAE is 0. 011 2, which can accurately identify the health status of the circuit breaker.

    参考文献
    相似文献
    引证文献
引用本文

孙曙光,王浩宇,王景芹,李 奎,郝永耀.基于空间运动特性的断路器健康状态识别[J].仪器仪表学报,2024,45(10):50-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-03
  • 出版日期:
文章二维码