基于直接法优化的激光点云室内轻量建图方法研究
DOI:
CSTR:
作者:
作者单位:

海军航空大学烟台264001

作者简介:

通讯作者:

中图分类号:

TP242TH74

基金项目:

山东省泰山学者基金(TSTP20221146)项目资助


Research on the indoor lightweight mapping method for laser point cloud based on the direct optimization approach
Author:
Affiliation:

Naval Aviation University, Yantai 264001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为满足室内服务机器人对高精度定位能力的需求,提出了基于直接法优化的激光点云室内轻量建图方法。该方法充分考虑了室内环境的结构化特征以及激光雷达的独特优势,首先通过点云滤波滤除地面点等冗余信息,随后将长点云序列基于VFH特征比对分割为多个片段,在每个片段内部采用NDT算法为配准提供初始估计,再基于像素亮度信息对位姿进行非线性优化,构建精确的局部地图;最后结合OPENGL多图层技术,拼接形成完整室内地图。为验证所提算法的准确性与性能,开发了专用的点云处理软件,并在实验楼的内部区域进行了试验。结果表明,在轻量化、低配置的条件下,本算法所构建的地图与当前知名算法LIOSAM建图结果保持了高度的一致性。同时,地图相对误差被控制在1%以内,帧间运算平均耗时为95.8 ms,在体现高精度的同时维持了良好的实时性能,因而具有一定的实际应用潜力和价值。

    Abstract:

    To fulfill the need for high-precision positioning capabilities of indoor service robots, this article proposes an indoor lightweight mapping method for laser point clouds based on direct optimization. This method fully considers the structural characteristics of indoor environments and the unique advantages of lidar. First, redundant information, such as ground points, is filtered out through point cloud filtering. Then, long point cloud sequences are segmented into multiple fragments. Inside each fragment, the NDT algorithm is used to provide an initial estimation for registration. Subsequently, nonlinear optimization of poses is conducted based on pixel brightness information to construct accurate local maps. Finally, combined with OPENGL′s multi-layer technology, a complete indoor map is assembled. To evaluate the feasibility and performance of the proposed algorithm, a dedicated point cloud processing software is developed and tested in the internal areas of an experimental building. The results show that, under lightweight and low-configuration conditions, the map constructed by this algorithm maintains a high degree of consistency with the currently well-known algorithm LIOSAM. Meanwhile, the relative error of mapping is controlled within 1%, and the average computation time between frames is 95.8 milliseconds. While demonstrating high precision, it also maintains excellent real-time performance, thus exhibiting potential and value for practical applications.

    参考文献
    相似文献
    引证文献
引用本文

郭凯,李文海,唐贞豪,唐曦.基于直接法优化的激光点云室内轻量建图方法研究[J].仪器仪表学报,2025,46(4):206-217

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-26
  • 出版日期:
文章二维码