BM3D-YOLOv8-s:前视声呐图像目标检测算法
DOI:
CSTR:
作者:
作者单位:

哈尔滨工程大学智能科学与工程学院哈尔滨150001

作者简介:

通讯作者:

中图分类号:

TH741TP391.41

基金项目:

国家自然科学基金(42276187)项目资助


BM3D-YOLOv8-s:Forward-looking sonar image target detection algorithm
Author:
Affiliation:

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    前视声呐作为海洋探测的重要传感器之一,能够远距离探测水下目标,被广泛应用于目标检测和跟踪领域中。然而,声呐数据采集时受海洋环境噪声影响,噪声分布不均匀,使得声呐图像的目标探测精度低。采用传统卷积神经网络对前视声呐目标进行跟踪时,因为声呐图像序列帧率较低、目标特征不清晰,容易出现目标丢失问题。针对前视声呐图像噪声污染严重的问题,结合前视声呐图像的特点,提出了一种改进的BM3D算法,减少3D转换处理的计算量,在基础估计的相似块匹配距离计算过程中,采用曼哈顿距离替代欧氏距离,更好地处理声呐图像中不同类型和强度的噪声;针对目标丢失问题,提出了基于YOLOv8-s改进网络的前视声呐图像目标检测算法,包括基于ConvNeXt的C2N改进算法、添加浅特征检测头和归一化Wasserstein 距离(NWD)损失函数的改进。进行了声呐图像数据采集,并进行了实验验证。实验结果表明,改进后模型的准确率为87.2%,mAP0.5为85.4%。与改进前的YOLOv8-s模型相比,虽然模型大小只增加了4.6 MB,但是精度增加了5.1个百分点,mAP@0.5增加了4个百分点,对比其他检测模型实验结果,改进后的YOLOv8-s能够有效提升声呐图像的目标检测精度。

    Abstract:

    Forward-looking sonar is a crucial sensor in ocean exploration, widely used for target detection and tracking over long distances. However, sonar data acquisition is often compromised by environmental noise in the ocean, which is unevenly distributed and reduces the accuracy of target detection in sonar images. Traditional convolutional neural networks (CNNs) for tracking forward-looking sonar targets often fail due to the low frame rates of sonar image sequences and unclear target features. To address the issue of noise pollution in forward-looking sonar images, this paper proposes an enhanced BM3D (Block Matching and 3D Filtering) algorithm tailored to the specific characteristics of sonar images. The Manhattan distance is utilized in place of the Euclidean distance to compute similar block-matching distances, improving noise handling across different types and intensities. Additionally, to mitigate target loss, we introduce a forward-looking sonar image target detection algorithm based on an improved YOLOv8-s network. This enhancement includes modifications to the ConvNeXt-based C2N algorithm, the addition of a shallow feature detection head, and improvements to the normalized Wasserstein distance (NWD) loss function. Experimental results from sonar image data acquisition show that the accuracy of the improved model is 87.2%, with an mAP@0.5 of 85.4%. Compared to the original YOLOv8-s model, the modified model′s size increased by only 4.6 MB, while precision improved by 5.1 percentage points, and mAP@0.5 rose by 4 percentage points. The improved YOLOv8-s outperforms other detection models, significantly enhancing target detection accuracy in sonar images.

    参考文献
    相似文献
    引证文献
引用本文

陈美龙,赵新华,叶秀芬. BM3D-YOLOv8-s:前视声呐图像目标检测算法[J].仪器仪表学报,2025,46(2):234-246

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-28
  • 出版日期:
文章二维码