基于点云分割与主成分配准的换电机器人位姿估计方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家重点研发计划项目(2021YFB2501603)资助


Pose estimation method for battery swapping robot based on point cloud segmentation and principal component registration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对新能源电动汽车换电过程中电池包加解锁精确定位问题,提出一种基于点云分割与主成分配准的电池包加解锁位 姿估计方法。 该方法首先使用实例分割网络分割出场景图片中的加解锁实例,将加解锁实例对应的深度数据投影成点云后,采 用统计滤波和体素滤波对加解锁点云进行去噪和下采样处理;其次通过在 PointNet++网络的特征提取层嵌入 SGE 注意力机制 模块,增强点云中点的空间语义特征并分割出锁头点云;最后采用点云主成分配准将锁头点云与目标点云配准,获取加解锁的 空间位姿。 实验结果表明,本文提出的位姿估计算法具有较高精度和一定抗干扰能力,其加解锁分割精度为 98. 02% ,位姿估计 平移误差为 2. 239 mm,角度误差为 1. 822°,RMSE 为 1. 495 mm,满足换电机器人加解锁定位精度需求。

    Abstract:

    Aiming at the precise positioning issue of the battery pack locking mechanism during the battery swapping process of new energy electric vehicles, a pose estimation method based on point cloud segmentation and principal component registration is proposed. The method first utilizes an instance segmentation network to extract the locking mechanism instances from the scene images. The depth data corresponding to the locking mechanism instances are projected into point clouds, and statistical filtering and voxel filtering are applied to denoise and downsample the point clouds. Secondly, by embedding the SGE attention mechanism module into the feature extraction layer of PointNet++ network, the spatial semantic features of points in the point cloud are enhanced, and the lock head point cloud is segmented. Finally, the spatial pose for locking mechanism is obtained by aligning the locking mechanism head point cloud with the target point cloud through principal component registration. Experimental results show that the pose estimation algorithm proposed in this paper has high accuracy and certain anti-interference capability, achieving a locking mechanism point cloud segmentation accuracy of 98. 02% , a translation error of 2. 239 mm, an angular error of 1. 822°, and an RMSE of 1. 495 mm, meeting the positioning accuracy requirements for battery swapping robots.

    参考文献
    相似文献
    引证文献
引用本文

王立辉,陈勇吉,韩华春,顾炜琪,陈良亮.基于点云分割与主成分配准的换电机器人位姿估计方法[J].仪器仪表学报,2024,45(10):123-132

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-03
  • 出版日期:
文章二维码