热膨胀效应修正流量偏差促进时序神经网络精准侦测溢流研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH71

基金项目:

国家自然科学基金(52074233)项目资助


Flow deviation correction through the thermal expansion effect enhances the precise detection of overflow in time-series neural networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着油气钻井日益向深部地层以及复杂地层发展,传统的溢流钻井事故监测凸显滞后性和多解性,复杂的地层情况和 井下高温高压,导致流量计量产生偏差,这是造成溢流识别精度的主要问题之一,针对计量偏差问题,利用泥浆热膨胀效应,构 建了一种流量修正模型,攻克非溢流影响因素,修正计量偏差。 其次在修正流量数据的基础上,建立了多元数据融合与时序神 经网络相结合的溢流识别预警模型,该模型的溢流漏报次数为 0,溢流及时率相较于常规监测手段得到了较大的提升,可提前 约 5 min 发出预警,在钻井作业工程中,具有较大的应用价值和前景。

    Abstract:

    As oil and gas drilling advances into deeper and more complex formations, traditional methods for monitoring overflow accidents show delays and offer multiple potential solutions. The challenging formation conditions, along with high temperature and pressure underground, result in flow measurement deviations, which significantly affect the accuracy of overflow detection. To address this issue, a flow correction model was developed, accounting for the thermal expansion of mud to correct these deviations by mitigating non-overflow influencing factors. Furthermore, based on the corrected flow data, an overflow identification and warning model was established using multivariate data fusion and a temporal neural network. This model eliminates missed overflow reports and significantly improves the timely detection rate compared to conventional methods. It can provide warnings up to 5 minutes in advance, offering substantial application value and potential in drilling operations K . eywords:thermal expansion effect; overflow identification; correct

    参考文献
    相似文献
    引证文献
引用本文

梁海波,杨梓为,耿 捷,刘名杨.热膨胀效应修正流量偏差促进时序神经网络精准侦测溢流研究[J].仪器仪表学报,2024,45(10):188-199

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-03
  • 出版日期:
文章二维码