基于机器视觉的锂电池缺陷检测研究进展
DOI:
CSTR:
作者:
作者单位:

南京航空航天大学电子信息工程学院南京211106

作者简介:

通讯作者:

中图分类号:

TP391.41TH89TK02

基金项目:

国家自然科学基金(61573183)项目资助


Research progress on defect detection of lithium battery based on machine vision
Author:
Affiliation:

College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锂电池作为新能源汽车的核心组件之一,其复杂的制造工艺流程不可避免地引入各种缺陷,严重影响产品的质量,缺陷检测已成为锂电池制造流程中的重要环节,而兼顾了精度与速度优势的机器视觉方法受到高度关注。本文综述了近15年来基于机器视觉的锂电池缺陷检测方法的研究进展。首先简介锂电池表面常见的缺陷类型,阐明视觉缺陷检测的主要流程。然后重点阐述了基于传统图像处理的锂电池缺陷检测方法,对检测流程中的图像预处理、图像分割、特征提取、分类识别4大步骤进行了详细的解释说明,并对比每个步骤中各类方法的优缺点。接着按分类网络、检测网络、分割网络这3类综述了基于深度学习的锂电池缺陷检测方法。随后整理了10个锂电池自建数据集和缺陷检测性能评价指标。最后指出针对锂电池缺陷检测目前面临着诸多方面的技术挑战,并对未来的工作进行了展望。

    Abstract:

    Lithium battery is one of the core components of new energy vehicles. But, the complex manufacturing process of lithium battery inevitably introduces various defects, which seriously affects the quality of products. Therefore, defect detection has become an important part of lithium battery manufacturing process. The machine vision method takes into account the advantages of accuracy and speed, which has been paid much attention to. In this article, the research progress of defect detection methods for lithium battery based on machine vision in recent 15 years is reviewed. Firstly, the common surface defect types of lithium battery are introduced, and the main flow of visual defect detection is clarified. Next, the defect detection method of lithium battery based on traditional image processing is emphasized. The four steps, including image preprocessing, image segmentation, feature extraction and classification recognition, are explained in detail. The advantages and disadvantages of each step are compared. Then, the defect detection methods based on deep learning are summarized according to the classification network, detection network and segmentation network. Afterwards, 10 self-built datasets of lithium battery and performance evaluation index of defect detection are sorted out. Finally, it is pointed out that the defect detection of lithium battery is faced with many technical challenges, and the future work is prospected.

    参考文献
    相似文献
    引证文献
引用本文

于瀚文,吴一全.基于机器视觉的锂电池缺陷检测研究进展[J].仪器仪表学报,2024,45(9):1-23

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码
×
《仪器仪表学报》
年底封账通知