基于图神经网络特征点匹配的视觉SLAM算法
DOI:
CSTR:
作者:
作者单位:

北京机电工程研究所北京100074

作者简介:

通讯作者:

中图分类号:

TP399TH701

基金项目:


Visual SLAM algorithm based on graph neural network feature point matching
Author:
Affiliation:

Beijing Electro-mechanical Engineering Institute, Beijing 100074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视觉SLAM技术在增强现实和无人驾驶等行业具有重要应用。然而传统视觉SLAM在低照度等挑战性场景中存在定位精度较低或定位失败的难题,本文提出一种图神经网络匹配前后帧特征点的视觉SLAM算法:VINS-GNN,在视觉SLAM前端设计一种把特征点匹配跟踪策略,将图神经网络与视觉SLAM结合,有效提升了SLAM前端特征点跟踪的性能;在视觉SLAM后端设计了一种基于多帧融合的回环重定位算法,近一步提高了全局定位精度。在包含低照度、低纹理的公开数据集对比实验中,VINS-GNN相比于VINS-Fusion定位精度提高了17.33%;在实际室内低照度实验中,VINS-GNN相比于VINS-Fusion在轨迹终点处精度提升显著,本文还引入了神经网络推理加速技术,以减少算法的资源占用并提升实时性。实验结果表明VINS-GNN提出的策略在室内低照度条件下的定位精度提升效果显著,对室内行人与移动机器人定位技术发展具有重要意义。

    Abstract:

    The vision-based simultaneous localization and mapping (SLAM) technology has significant applications in industries, such as augmented reality and autonomous driving. However, traditional visual SLAM faces challenges such as low positioning accuracy or failure in low-light conditions. This article proposes a visual SLAM algorithm based on graph neural network (GNN) for matching feature points between consecutive frames, e.g., VINS-GNN. In the front end of the visual SLAM, a feature point matching and tracking strategy is designed, integrating GNN with visual SLAM, which could effectively enhance the performance of feature point tracking. In the back end, a loop closure algorithm based on multi-frame fusion is designed to further improve global positioning accuracy. Comparative experiments on public datasets with low light and low texture show that VINS-GNN improves positioning accuracy by 17.33% compared to VINS-Fusion. In real indoor low-light experiments, VINS-GNN significantly improves the accuracy at the end of the trajectory compared to VINS-Fusion. Additionally, the article introduces neural network inference acceleration techniques to reduce resource consumption and enhance real-time performance. Experimental results show that the strategies proposed by VINS-GNN significantly enhance positioning accuracy under indoor low-light conditions, which is of great significance for the development of indoor pedestrian and mobile robot positioning technology.

    参考文献
    相似文献
    引证文献
引用本文

纪泽源,于潇颖,付文兴.基于图神经网络特征点匹配的视觉SLAM算法[J].仪器仪表学报,2024,45(9):34-43

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码
×
《仪器仪表学报》
年底封账通知