基于PointPillars的改进三维目标检测算法
DOI:
CSTR:
作者:
作者单位:

东南大学仪器科学与工程学院南京210096

作者简介:

通讯作者:

中图分类号:

TH701TH701

基金项目:

国家十四五重点研发计划(2021YFB3900804)项目资助


Improved three-dimensional object detection algorithm based on PointPillars
Author:
Affiliation:

School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于激光雷达的目标检测技术在自动驾驶、机器人导航和无人机等领域得到广泛应用,由于激光雷达点云数据的稀疏性和不均匀分布,目标的检测和分类面临挑战。为此,本文提出一种基于PointPillars算法改进的三维目标检测算法,首先设计了更为有效的点云柱状特征编码网络,在编码网络中引入逐点和逐通道的双重注意力编码网络,提高每个pillar的特征表示能力。其次,在主干网络部分,融合全局上下文信息网络GCNet和CSPDarknet网络以提高特征图表征能力,使得网络在特征提取阶段能够更为充分地提取丰富的上下文语义信息。通过KITTI数据集进行了实验验证,相较于基准模型,改进方法具有更高的检测精度,在简单、中等和困难3种场景下,改进算法平均精度分别提升了2.12%、2.51%和1.84%。同时,改进算法检测速度达到35.6 FPS,证明了该方法在保持检测算法实时性的同时,有效地提高了检测精度。

    Abstract:

    LiDAR-based object detection technology is widely used in fields such as autonomous driving, robotic navigation, and drones. However, due to the sparsity and uneven distribution of LiDAR point cloud data, object detection and classification face significant challenges. Aiming at this problem, this paper proposes an improved 3D object detection algorithm based on the PointPillars algorithm. Firstly, a more efficient point cloud pillar feature encoding network is designed, incorporating a dual attention encoding network with point-wise and channel-wise attention, enhancing the feature representation capability of each pillar. Secondly, in the backbone network part, the global context information network (GCNet) and CSPDarknet network are integrated to improve the feature map representation ability, allowing the network to extract rich contextual semantic information more comprehensively during the feature extraction phase. Experiments conducted on the KITTI dataset demonstrate that the proposed method achieves higher detection accuracy compared to the baseline model, with mean Average Precision improvements of 2.12%, 2.51%, and 1.84% in easy, moderate, and hard scenarios, respectively. Additionally, the improved algorithm achieves a detection speed of 35.6 FPS, demonstrating that this method effectively enhances detection accuracy while maintaining real-time performance.

    参考文献
    相似文献
    引证文献
引用本文

汤新华,代道文,陈熙源,潘树国.基于PointPillars的改进三维目标检测算法[J].仪器仪表学报,2024,45(9):260-269

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码
×
《仪器仪表学报》
年底封账通知