摘要:异常检测作为视觉领域中一项独特而关键的任务,在医疗、安保等领域具有广泛的前景。 异常检测目前受限于大规模 异常数据标注,因此现有方法集中在单类分类和弱监督学习,深度支持向量描述(Deep SVDD)是实现单类分类的常见方法。 然 而,传统 Deep SVDD 在开展异常检测时往往面临球体崩塌。 针对这一问题,提出了基于球面正则化的 SVDD 异常检测算法,通 过引入软间隔损失与支持向量的思想,优化模型学习流程。 进一步地,面向可标注样本,提出了基于 SVDD 的弱监督异常检测 方法。 在公开数据集 MNIST 和 CIFAR-10 上进行消融和对比实验,实验证明,相比于有监督算法,在 MNIST 数据集上,SRWSVDD 的性能提高了 3. 7% ,而在 CIFAR-10 数据集上则提高了 16. 7% 。 此外,与其他弱监督算法相比,SR-WSVDD 在 CIFAR- 10 数据集上提升了 1. 8% 。 所提出的 SR-SVDD 异常检测算法,弥补 Deep SVDD 容易发生球体崩塌的缺陷,使模型异常检测结 果更加准确。