基于相似度对比学习的连接器零样本异常检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH166 TP391. 4

基金项目:

国家重点研发计划(2022YFB3306100)、航空科学基金(2019ZE105001)项目资助


A zero-shot connector anomaly detection approach based on similarity-contrast learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    连接器是电子装备不可或缺的功能部件,其工作接触面的洁净无异物是电子装备正常工作的必要条件。 针对连接器种 类和样式繁多、异物样本少且形态不固定导致的误检、漏检频发问题,本文提出了一种新颖的零样本异常检测方法,通过在无关 背景图片上合成随机异常,构建正常-异常样本图片对,经过网络预测得到表征样本对之间的像素级相似度的差异度分数图, 以此对异常进行检测和定位。 通过异常区域掩码监督,使网络专注于正常-异常样本之间的像素差异,弱化网络对图片自身语 义信息的关注,同时减少真实样本的需求量,提升检测器的泛化能力。 为验证算法有效性,仅使用合成数据训练网络,在 DeepPCB 数据集上进行了评估,方法取得 88. 2% 的 mAp,迁移学习之后取得 99. 1% 的 mAp,为该数据集上目前最好的效果。 实 验结果表明本文提出的零样本异常检测方法具有良好的泛化能力。

    Abstract:

    Connectors are essential components of electronic devices, and the cleanliness of their working contacts is a necessary condition for the normal operation of electronic equipment. To address the frequent issues of false positives and false negatives caused by the diverse types and styles of connectors, as well as the limited and variable foreign object samples, this article proposes a novel zeroshot anomaly detection method. By synthesizing random anomalies on unrelated background images, it constructs pairs of normal-anomaly sample images. Through network prediction, a discrepancy score map representing the pixel-level similarity between sample pairs is obtained, enabling anomaly detection and localization. By employing anomaly region mask supervision, the network focuses on the pixel differences between normal and anomaly samples, reducing the network′s attention to the semantic information of the images themselves and minimizing the need for real samples. Thus, the generalization ability of the detector is enhanced. To evaluate the effectiveness of the algorithm, the network is trained solely on synthesized data and evaluated on the DeepPCB dataset, achieving a mAP (mean average precision) of 88. 2% . After transfer learning, the mAP increases to 99. 1% , which is the best performance on this dataset to date. Experimental results demonstrate the strong generalization ability of the proposed zero-shot anomaly detection method.

    参考文献
    相似文献
    引证文献
引用本文

王 月,银兴行,郑 帅,刘永旭,王 鹏.基于相似度对比学习的连接器零样本异常检测方法[J].仪器仪表学报,2023,44(10):201-209

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-25
  • 出版日期:
文章二维码