摘要:现实环境中智能轮椅大多数处在复杂场景下工作,其自主导航时对路径安全性等要求较高。 渐进最优随机搜索树 RRT ∗ 算法 基本满足移动机器人最优路径规划,但由于智能轮椅本体较大,容易与环境较近接触,因此可对环境模型进行膨胀并定义不同搜索步 长,使其规划出的路径远离障碍物。 其次为保证用户在使用智能轮椅导航时能够获得更高的舒适性,更高效的到达目的地,而借用启 发式约束采样思想和人工势场中引力场思想修剪此算法规划时的冗余节点,从而减小系统运行内存,随后结合轮椅的最小转弯半径, 提出最小段路径曲率约束策略和三次 B 样条曲线算法对路径进行平滑处理,使其更加适合轮椅行驶。 最终在 MATLAB 和 Gazebo 仿真 平台对改进前后算法对比实验,并将本文算法应用与智能轮椅实体上,试验结果表明,该算法能够有效解决智能轮椅全局路径规划问 题,能够明显提升全局路径规划效率,具有一定安全性,可为其移动机器人领域提供有效参考。