基于荷电状态差异的退役电池健康状态快速估计研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH89 TM93

基金项目:

安徽省科技重大专项 (18030901064)资助


Research on fast estimation of the state of health of retired batteries based on the state of charge differences
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着新能源产业的迅速发展,大量动力电池面临退役回收后如何处理的问题。 退役电池的二次利用场景需要根据健 康状态( SOH)确定,然而不同退役电池的荷电状态不同,这使得快速估计 SOH 十分困难。 为此,提出了一种基于荷电状态差 异的退役电池的 SOH 快速获取策略。 在本策略中,不同 SOH 退役电池的荷电状态差异被用于产生多种健康特征。 同时,为 了选取随机森林算法合适的超参数,遗传优化随机森林回归算法被提出应用于 SOH 的估计。 通过验证,本文策略大幅降低 了退役电池 SOH 的估计时间。 并且通过多种避免测量时接触电阻和导线电阻策略,使得 10 节退役电池的健康状态估计误 差低于 3% 。

    Abstract:

    With the rapid development of the new energy industry, how to deal with a large number of retired batteries is problem. The secondary utilization scenarios of retired batteries need to be determined based on the state of health (SOH). However, the traditional method of obtaining SOH is time-consuming and energy-consuming. Therefore, the study of fast SOH estimation is very meaningful. The unavailability of historical working condition information and the unknown state of charge at the time of detection make fast SOH estimation very difficult. For this reason, this article proposes a fast SOH acquisition strategy for retired batteries based on the difference in state of charges. In this article, the state of charge′s differences of different SOH retired batteries are used to generate multiple health features. Meanwhile, to select suitable hyperparameters for the random forest algorithm, the genetic optimization random forest regression algorithm is proposed to be applied for SOH estimation. Through experiments, the proposed strategy substantially reduces the estimation time of SOH for retired batteries. Through multiple strategies to avoid contact resistance and wire resistance during measurement, the error of health state estimation of 10 retired batteries is lower than 3% .

    参考文献
    相似文献
    引证文献
引用本文

汪宇航,黄海宏,王海欣,武 旭.基于荷电状态差异的退役电池健康状态快速估计研究[J].仪器仪表学报,2023,44(12):55-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-27
  • 出版日期:
文章二维码
×
《仪器仪表学报》
年底封账通知