基于改进 R 3 det 的无人机电力杆塔倾斜程度检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH701

基金项目:

国家自然科学基金 (92066106)、江苏省科协青年科技人才托举工程 (2021031)、东南大学“至善青年学者”支持计划(中央高校基本科研业务费) (2242022R40022)项目资助


Incline detection of power towers from UAV images based on the improved R 3 det
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机巡检图像中的电力杆塔具有多姿态、大长宽比等特点,难以利用特有的先验知识来准确定位和判别不同倾斜程 度的杆塔。 本文提出了一种改进的 R 3 det 网络模型(Multi-Head-KF-R 3 det),可提高电力杆塔倾斜程度检测精度。 首先,在原始 R 3 det 中引入倾斜程度分支,实现了电力杆塔类别和倾斜程度的判别以及电力杆塔的准确定位。 然后,将基于卡尔曼滤波的旋 转交并比损失项引入回归损失函数中,在不增加额外超参的情况下,进一步提升了模型整体检测精度以及倾斜程度检测召回 率。 最后,基于 Ghost 轻量化网络设计原理对改进后的模型进行合理压缩,为模型在嵌入式设备中的部署奠定基础。 实验结果 表明,Multi-Head-KF-R 3 det 在多尺度和多姿态的电力杆塔数据集上检测精度和召回率分别可达 94. 5% 和 94. 9% 。

    Abstract:

    Power towers in unmanned aerial vehicle (UAV) inspection images have the characteristics of multi-attitude and large-aspect ratios, which are difficult to accurately locate and distinguish towers with different degrees of inclination according to unique prior knowledge. To improve the incline detection accuracy, this article proposes a method for processing UAV images based on the improved refined rotation RetinaNet (Multi-Head-KF-R 3 det). Firstly, the incline detection head is added to the original R 3 det model to achieve the classification of power towers and their inclination degrees, as well as the accurate location. Then, the Kalman-filter intersection over union loss is introduced into the regression loss function to effectively improve the overall detection accuracy and recall rates of incline detection without additional hyperparameters. Finally, the improved model is reasonably compressed based on the design principles of ghost lightweight network, which lays a foundation for the deployment of the model in embedded devices. The experimental results show that the mAP and recall rates of Multi-HeadKF-R 3 det on multi-scale and multi-attitude power tower datasets can reach 94. 5% and 94. 9%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

胡 霞,仲林林.基于改进 R 3 det 的无人机电力杆塔倾斜程度检测[J].仪器仪表学报,2023,44(10):189-200

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-25
  • 出版日期:
文章二维码