基于深度学习的三维点云分析方法研究进展
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH89

基金项目:

国家自然科学基金(61573183)项目资助


Research progress of 3D point cloud analysis methods based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    点云是目前自动驾驶、机器人、遥感、增强现实(AR)、虚拟现实(VR)、电力、建筑等领域最常用的三维数据处理形式,深 度学习方法能够处理大型数据,且可自主提取特征,因此点云深度学习方法已逐渐成为研究热点。 本文综述了近十年来基于深 度学习的三维点云分析方法的研究进展。 首先给出了三维点云深度学习的相关概念;然后针对点云目标检测与跟踪、分类分 割、配准和匹配以及拼接这 4 种任务,分别阐述了相应的深度学习方法的原理,分析并比较了各自的优缺点;随后整理了 18 种 点云数据集和 4 种点云分析任务的性能评价指标,并给出了性能对比结果;最后总结了点云分析方法目前存在的问题,对进一 步的研究工作进行了展望。

    Abstract:

    Point cloud is the most commonly used form of 3D data processing in the fields of autonomous driving, robotics, remote sensing, augmented reality ( AR) , virtual reality ( VR) , electric power, architecture, etc. Deep learning methods can not only handle large-scale data, but also extract features independently. Therefore, point cloud deep learning methods have gradually become a research hotspot. This article reviews the research progress of 3D point cloud analysis methods based on deep learning in the past decade. Firstly, the relevant concepts of deep learning for 3D point cloud are presented. Then, for the four tasks of point cloud object detection and tracking, classification and segmentation, registration and matching, and stitching, the principles of the corresponding deep learning methods are elaborated. Their advantages and disadvantages are analyzed and compared. Next, eighteen kinds of point cloud datasets and performance evaluation indexes for four types of point cloud analysis tasks are introduced. The performance comparison results are given. Finally, the existing problems of point cloud analysis methods are pointed out, and the further research work is prospected.

    参考文献
    相似文献
    引证文献
引用本文

陈慧娴,吴一全,张 耀.基于深度学习的三维点云分析方法研究进展[J].仪器仪表学报,2023,44(11):130-158

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-29
  • 出版日期:
文章二维码