基于边际谱熵的肌肉疲劳实时评估方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH789 R318.6

基金项目:

科技型中小企业技术创新基金 (11C26213402042)


Real-time assessment of muscle fatigue based on marginal spectrum entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    肌肉疲劳是一种复杂的生理现象。针对利用表面肌电信号实时评估肌肉疲劳,要求疲劳指标兼具快速、可靠、抗噪的问题,提出基于边际谱熵的肌肉疲劳实时评估方法。首先,利用不同数据长度的确定性周期信号和高斯白噪声分析了边际谱熵快速性与数据长度稳健性。其次,利用10名受试者握力持续静态收缩状态下从100%MVC下降到50%MVC时桡侧腕长伸肌的肌肉疲劳信号,分析了边际谱熵评估肌肉疲劳的可靠性与应用于不同个体的稳定性。最后,在某一受试者肌肉疲劳信号中加入高斯白噪声和心电噪声考察了边际谱熵的抗噪性。实验结果表明:边际谱熵与近似熵和中值频率相比计算快速,数据长度稳健性更优;线性拟合优度较佳(0.46±0.14),能可靠地评估肌肉疲劳;斜率变异系数较低(30.30%),对不同个体稳定性高;加入高斯白噪声和心电噪声后边际谱熵拟合优度变化率较低(分别为34.39%和3.78%),具有良好的抗噪性。因此边际谱熵兼具快速、能可靠评估肌肉疲劳以及抗噪等优点,为实时评估肌肉疲劳提供了一种新方法。

    Abstract:

    Muscle fatigue is a complex physiological phenomenon. The real-time assessment of muscle fatigue by surface electromyography requires that fatigue indices are rapid, noise immunity, and reliable. Thus, the real-time assessment of muscle fatigue has been proposed based on the marginal spectrum entropy. First, deterministic periodic signals with different data lengths and Gauss white noise has been used to analyze the rapidity of marginal spectrum entropy and the robustness of data length. Then, the muscle fatigue signals of long extensor carpi when the 10 subjects grip under continuous static contraction state decreases from 100% maximal voluntary contraction to 50% maximal voluntary contraction, has been used to analyze the reliability of assessment method of muscle fatigue based on marginal spectrum entropy and the stability of the method applied to different individuals. Finally, the noise immunity of marginal spectral entropy has been investigated by adding Gauss white noise and electrocardiogram noise into the muscle fatigue signal of a subject. The experimental results show that compared with approximate entropy and median frequency, the calculation based on marginal spectrum entropy is more rapid and data length robustness is more obvious. Also, Goodness of fit based on marginal spectrum entropy is better(0.46±0.14) ,the marginal spectrum entropy can reliably assess muscle fatigue. Slope of the coefficient of variation is lower(30.30%),the marginal spectrum entropy is highly stable for different individuals. Rate of change of the goodness of fit of the marginal spectral entropy is lower after adding Gaussian white noise and electrocardiogram noise(additive Gaussian white noise and additive electrocardiogram noise are 34.39% and 3.78% respectively).Therefore, marginal spectrum entropy has the advantages of rapidity, noise immunity, reliability of assessing muscle fatigue. It can be concluded that the marginal spectrum entropy is suitable for real-time assessment of muscle fatigue, which supplies a new method for muscle fatigue assessment.

    参考文献
    相似文献
    引证文献
引用本文

侯言旭,姜礼杰,胡保华,张秀锋,王勇.基于边际谱熵的肌肉疲劳实时评估方法研究[J].仪器仪表学报,2017,38(7):1625-1633

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-12-28
  • 最后修改日期:2017-07-07
  • 录用日期:2017-07-17
  • 在线发布日期: 2024-01-16
  • 出版日期:
文章二维码