多特征优化下室内声源鲁棒跟踪算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH712

基金项目:


Robust tracking algorithm for indoor sound source based on Multi-feature optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对室内强混响低信噪比下单特征声源跟踪精度低和稳健性差的问题,提出了一种多特征优化鲁棒跟踪算法。 该算法 建立了基于时延估计多假设模型的多特征优化机制,克服了混响噪声下单特征定位性能差的缺陷。 为了提高多特征优化机制 对说话人随机运动的稳健性,提出了交互式多模型(IMM)粒子滤波改进算法,通过对模型噪声方差和模型概率实时调整,增强 了多特征优化机制的鲁棒性。 仿真分析和实际测试结果表明,在多特征优化机制下,IMM 改进算法比已有模型位置平均均方 根误差(RMSE)降低约 12% ;在 IMM 改进算法下,多特征优化机制相对其他算法位置平均 RMSE 降低 89. 6% 左右。 该算法明显 消除了混响噪声的不利影响,提高了声源定位与跟踪的精度和鲁棒性。

    Abstract:

    To address the issue of low accuracy and poor robustness in single-feature sound source tracking under strong indoor reverberation and low signal-to-noise ratio (SNR), a robust tracking algorithm using multi-feature optimization mechanism is presented in this paper. This algorithm establishes a multi-feature optimization mechanism based on a time-delay estimation multi-hypothesis model, overcoming the poor localization performance of single-feature tracking in reverberant noise environments. Moreover, To enhance the robustness of the multi-feature optimization mechanism against random movements of the speaker, we introduce an improved Interacting Multiple Model (IMM) particle filter algorithm. By real-time adjustment of model noise variance and model probability, the robustness of the multi-feature optimization mechanism is improved. Simulation analysis and actual test results indicate that the average root mean square error (RMSE) of the position is reduced by approximately 12% using the proposed algorithm, compared with the existing literature, under the multi-feature optimization mechanism. Based on the improved IMM algorithm, the average RMSE of the position is reduced by nearly 89. 6% through the proposed algorithm, compared with the other algorithms. The proposed algorithm significantly eliminates the adverse effects of reverberation and noise, and improves the accuracy and robustness of sound source localization and tracking.

    参考文献
    相似文献
    引证文献
引用本文

刘望生,刘艳梅.多特征优化下室内声源鲁棒跟踪算法[J].仪器仪表学报,2024,45(8):316-325

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-18
  • 出版日期:
文章二维码