采用动态校准与联合分布对齐的旋转机械跨工况故障诊断
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133. 3 TP206. 3

基金项目:

国家自然科学基金(62263021)、甘肃省科技计划(21YF5GA072)、甘肃省教育厅产业扶持(2021CYZC-02)项目资助


Rotating machinery fault diagnosis across working conditions using dynamic calibration and joint distribution alignment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    迁移学习作为一种解决领域间分布差异的有效技术,近年来在故障诊断领域得到了越来越多的关注。 然而,现有的旋 转机械故障诊断方法在迁移学习过程中,通常未能充分考虑不同样本对诊断结果的影响。 此外,传统的边缘分布对齐方法在减 小源域与目标域数据之间分布差异方面的效果也不够理想,在很大程度上限制了迁移学习方法在实际应用中的有效性。 针对 以上问题,提出一种基于动态校准与联合分布对齐的旋转机械跨工况故障诊断方法。 首先,该方法构建动态校准残差网络 (DCRN)作为特征提取层,该层通过设计动态校准结构,根据不同样本的权重进行调整,增强网络的特征表达能力;其次,设计 域自适应层并提出一种新的联合分布对齐机制(JDAM),该机制在进行特征对齐时,充分考虑了源域与目标域数据之间的边缘 分布差异和条件分布差异,使得网络模型在源域上学习到的知识可以有效迁移到目标域上,从而显著提升目标任务的性能;最 后使用 I-Softmax 函数优化分类器,使网络能够更好地识别不同状态的故障。 使用美国凯斯西储大学轴承数据集、MFS 轴承数 据集与滚轴齿轮数据集进行实验验证,在跨工况与变噪声条件下,所提方法的平均准确率分别为 96. 50% 、96. 87% 和 94. 72% , 表明所提方法具有较高的故障诊断准确率和良好的泛化能力。

    Abstract:

    Transfer learning, as an effective technique to address distributional differences between domains, has received increasing interest in the field of fault diagnosis in recent years. However, the existing rotating machinery fault diagnosis methods usually fail to adequately consider the impact of different samples on the diagnostic results during the transfer learning process. In addition, the traditional edge distribution alignment method is not effective enough in reducing the distribution differences between source and target domains data, which largely limits the practical effectiveness of transfer learning methods. Aiming at the above problems, a rolling bearing fault diagnosis method based on dynamic calibration and joint distribution alignment is proposed. Firstly, the dynamically calibrated residual network (DCRN) is constructed as the feature extraction layer, which enhances the feature expression capability of the network by designing a dynamic calibration structure and adjusting the weights according to different samples. Secondly, the domain adaptive layer is designed and a new joint distribution alignment mechanism ( JDAM) is proposed. This mechanism gives full consideration to the edge distribution differences and condition distribution differences between the data of the source and target domains during feature alignment, enabling the effective transfer of knowledge learned in the source domain to the target domain and significantly improving the performance of the target task. Finally, the I-Softmax function is used to optimize the classifier, allowing the network to better identify the faults in different states. Experimental validation was given using the Case Western Reserve University bearing dataset, the MFS Bearing dataset and the roller gear dataset. Under cross-domain and variable noise conditions, the proposed method achieved average accuracies of 96. 50% , 96. 87% , and 94. 72% , respectively, demonstrating high fault diagnosis accuracy and good generalization capability.

    参考文献
    相似文献
    引证文献
引用本文

郭海科,赵小强.采用动态校准与联合分布对齐的旋转机械跨工况故障诊断[J].仪器仪表学报,2024,45(8):32-44

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-18
  • 出版日期:
文章二维码