基于胃部肿瘤病理数据特征提取的分型模型研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 41 TH89

基金项目:

青海省 2023 年第 1 批科技计划(基础研究计划项目)(2023-ZJ-732)项目资助


Research on feature classification model based on pathological data of gastric tumor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    胃癌的早期发现和组织病理的精准分型可有效提高患者的 5 年生存率,但有限的医疗资源难以满足这一需求。 基于 ResNet-50 的 DeepLab v3 语义分割算法,构建了胃部肿瘤病理分型识别系统,辅助病理医生实现快速高效精准的协同分型诊断。 针对不含恶性肿瘤的情况,完善实现了胃部低级别上皮内瘤变的二分类识别。 医院临床及资深医师像素级标注的 1 854 张胃 部组织数字切片进行了训练和测试,实现了在癌区识别基础上准确率为 61. 8% 、kappa = 0. 496 的分型诊断和敏感度 100% 、特异 性 75. 8% 和 AUC= 0. 972 的低级别上皮内瘤变诊断。 提出的胃癌分型诊断能够标出癌区,并给出诊断参考;低级别上皮内瘤变 的诊断较为精确。

    Abstract:

    The early detection and precise pathological classification of gastric cancer can effectively improve the possibility of cure, posing higher demands on limited medical resources. In response to the various sources of classification for gastric cancer and the shortage of pathologists, this paper, for the first time, constructs a gastric tumor pathological classification recognition system using the ResNet-50-based DeepLab v3 semantic segmentation algorithm. This system assists pathologists in achieving rapid, efficient, and accurate collaborative diagnostic classification. For cases without malignant tumors, this paper also implements the binary classification recognition of low-grade intraepithelial neoplasia in the stomach. After training and testing on 1854 digitally annotated slices of gastric tissue from the Chinese PLA General Hospital, pixel-level annotated by experienced physicians, the system achieved a classification diagnosis accuracy of 61. 8% with a kappa value of 0. 496 for cancer zone identification. For low-grade intraepithelial neoplasia diagnosis, it attained a sensitivity of 100% , a specificity of 75. 8% , and an AUC of 0. 972. This paper presents the first implementation of gastric cancer classification diagnosis, capable of identifying cancerous areas and providing diagnostic references. Additionally, the system demonstrates high sensitivity and relatively accurate results for diagnosing low-grade intraepithelial neoplasia.

    参考文献
    相似文献
    引证文献
引用本文

张 建,宋志刚,王书浩,付哲铭,王 磊.基于胃部肿瘤病理数据特征提取的分型模型研究[J].仪器仪表学报,2024,45(7):210-217

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-24
  • 出版日期:
文章二维码