基于机器视觉的芯片缺陷检测研究进展
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 41 TN305 TH89

基金项目:

国家自然科学基金(61573183)项目资助


Research progress in chip defect detection based on machine vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    半导体芯片作为集成电路的重要组成部分,对其质量要求越来越高,因芯片在小型化、高密度的制造过程中产生缺陷, 进而影响了芯片的性能和寿命。 因此,缺陷的检测与识别对芯片可靠性的提升十分重要。 综述了近 10 年来国内外基于机器视 觉的芯片缺陷检测方法的研究进展。 首先介绍了芯片的制造流程以及当前主流的芯片封装技术。 然后概述了用于芯片缺陷成 像的主流无损检测技术,主要包括光学成像、声学成像、红外热成像、电磁成像与 X 射线成像等技术。 接着分别重点阐述了基 于传统技术和基于深度学习的芯片表面的缺陷检测方法。 随后按照缺陷部位比较分析了芯片封装体的缺陷检测方法。 最后总 结芯片缺陷检测当前存在的问题,对未来的研究方向进行了展望。

    Abstract:

    As a critical element of integrated circuits, semiconductor chips now demand increasingly higher quality standards. During the miniaturization and high-density manufacturing processes, chips are prone to defects that can impact their performance and longevity. Therefore, detecting and identifying these defects is crucial for enhancing chip reliability. This paper reviews the advancements in chip defect detection methods using machine vision over the past decade, both domestically and internationally. Initially, it introduces the chip manufacturing process and the prevailing chip packaging technologies. It then outlines the mainstream non-destructive testing technologies for chip defect imaging, which include optical imaging, acoustic imaging, infrared thermal imaging, electromagnetic imaging, and X-ray imaging. The paper further explains the methods for detecting surface defects in chips using both traditional technologies and deep learning. Additionally, it compares and analyzes defect detection methods for chip packages based on defect locations. Finally, the paper summarizes the current challenges in chip defect detection and explores potential future research directions

    参考文献
    相似文献
    引证文献
引用本文

胡志强,吴一全.基于机器视觉的芯片缺陷检测研究进展[J].仪器仪表学报,2024,45(7):1-26

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-24
  • 出版日期:
文章二维码