基于电源端电压的电动汽车电弧故障检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM501. 2 TH89

基金项目:

国家自然科学基金(52104160) 、2022 年度葫芦岛市科技指导计划重点研发项目( 2022JH2 / 07b)资助


Arcing fault detection in electric vehicles based on power supply terminal voltage
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当电动汽车主电路的电气接触点接触不良时,极易产生电弧故障,直接威胁车内人员的生命安全。 论文提出了一种基 于自定义差分阈值滤波-分段最大值标准化-统计数值规律的电弧故障检测方法。 首先围绕真实电动汽车吉利帝豪 EV450 搭 建了电动汽车电弧故障实验平台,开展了电动汽车在不同工作模式下的电弧故障实验。 然后以电源端电压为对象,对信号进行 小波分解,对小波分解得到的低频系数进行自定义差分阈值滤波和分段最大值标准化。 最后统计标准化后数据相同值个数,并 通过阈值法检测串联型电弧故障。 论文对模型样本长度、差分阈值比例、最大值标准化分段数、预处理方法选择等进行了深入 分析,并对参数进行了优化设置,进一步提升模型性能。 结果表明,所建模型对电动汽车电弧故障检测准确率为 98. 35% ,且实 时性较好。 通过对模型进行泛化性分析、算法时间复杂度分析及与其他电弧故障检测模型对比分析,证明论文所建模型对电动 汽车电弧故障检测具有较好的适用性。

    Abstract:

    When the electrical contact points of the main circuit of an electric vehicle have poor contact, it is extremely easy to generate arc faults, directly threatening the life safety of the occupants. This paper proposes an arc fault detection method based on Customized differential threshold filtering, segmented maximum standardization, and statistical numerical rules. Firstly, an electric vehicle arc fault experimental platform was built around the real electric vehicle Geely Emgrand EV450, to conduct arc fault experiments under different working modes. Then, taking the power supply terminal voltage as the object, the signal is subjected to wavelet decomposition. The low-frequency coefficients obtained from wavelet decomposition were subjected to Customized differential threshold filtering and segmented maximum value standardization. Finally, the number of identical values in the normalized data was counted, and series arc faults were detected using a threshold method. The paper conducted in-depth analysis of the model′s sample length, differential threshold ratio, number of segments in maximum normalization, and preprocessing method selection, optimizing the parameters to further improve the model performance. The results show that the accuracy of the constructed model for detecting electric vehicle arc faults is 98. 35% , with good real-time performance. Through generalization analysis, algorithm time complexity analysis, and comparative analysis with other arc fault detection models, it is proven that the proposed model has good applicability for arc fault detection in electric vehicles.

    参考文献
    相似文献
    引证文献
引用本文

刘艳丽,杨贺允,刘乙雁,崔诗淼,王 浩.基于电源端电压的电动汽车电弧故障检测[J].仪器仪表学报,2024,45(5):262-270

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-14
  • 出版日期:
文章二维码