基于局部能量密度的中介轴承故障特征提取与诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133

基金项目:

辽宁省教育厅面上项目 (JYTMS20230249)、中国航发产学研合作项目 (HFZL2018CXY017)资助


Local energy density-based method for intermediary bearing fault feature extraction and diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对航空发动机中介轴承振动信号在复杂传递路径和强背景噪声条件下的故障特征提取难题,本文提出了一种基于局 部能量密度(LED)的中介轴承故障特征提取与诊断方法。 首先,采用奇异谱分析对故障信号进行初步的降噪处理,并通过基于 余弦值的方法确定最优的重构阶次,以保留信号中的关键故障信息。 接着,引入新指标 LED,用于量化故障特征频率及其谐波 在局部频率范围内的能量比例。 该指标不仅能有效提取微弱的故障特征,而且对于实际故障频率与理论故障频率之间可能存 在的偏差表现出较强的鲁棒性。 以 LED 作为适应度函数,通过人工蜂鸟算法优化的最大相关峭度解卷积(MCKD)增强奇异谱 分析降噪后信号中的故障特征。 最后,通过包络谱分析完成故障诊断。 本文通过中介轴承故障模拟实验和加噪实验验证了所 提方法的有效性,实验结果表明,与现有的故障诊断技术相比,本文所提出的方法的故障特征系数( FFC) 和 LED 分别增加 20. 7% ~ 218% 和 22. 9% ~ 134% 。 在 0 dB,-4 dB 和-10 dB 噪声条件下,该方法仍准确地识别到外圈故障的特征频率及倍频,表 明所提出的 SSA_MCKD 能有效降低信号噪声并提取滚动轴承的故障特征。

    Abstract:

    Addressing the challenge of extracting fault characteristics from vibration signals of inter-shaft bearings in aeroengine amidst complex transmission paths and strong background noise, this paper proposes a method based on local energy density (LED) for fault feature extraction and diagnosis. Initially, singular spectrum analysis is employed for preliminary noise reduction of the fault signals and optimal reconstruction order determination using a cosine-based approach to preserve crucial fault information within the signal. Subsequently, a novel metric, LED, is introduced to quantify the energy ratio of fault characteristic frequencies and their harmonics within a local frequency range. This metric not only effectively extracts subtle fault features but also demonstrates robustness against deviations between actual and theoretical fault frequencies. Utilizing LED as the fitness function, the method enhances fault features in the denoised signal through maximum correlation kurtosis deconvolution (MCKD) optimized by the artificial hummingbird algorithm. Fault diagnosis is achieved through envelope spectrum analysis. The effectiveness of the proposed method is validated through intermediary bearing fault simulation and noise addition experiments, showing a 20. 7% to 218% increase in the fault feature coefficient (FFC) and a 22. 9% to 134% increase in LED compared to existing fault diagnosis techniques. The method accurately identifies the characteristic frequencies and harmonics of outer race faults under noise conditions of 0 dB, -4 dB, and -10 dB, indicating that the proposed SSA_MCKD can effectively reduce the influence of signal noise and extract fault features of rolling bearing.

    参考文献
    相似文献
    引证文献
引用本文

栾孝驰,郝冠丞,沙云东,张振鹏,赵奉同.基于局部能量密度的中介轴承故障特征提取与诊断方法[J].仪器仪表学报,2024,45(5):239-250

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-14
  • 出版日期:
文章二维码