随机工况下基于改进 ANFIS 的锂电池容量衰减实时估计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165 TM911

基金项目:


Real-time estimation of lithium battery capacity degradation based on an improved neural fuzzy inference system under random operating conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锂电池容量的衰减会影响其安全性和稳定性,准确的容量估计能够帮助用户进行更好的决策。 目前,广泛使用的黑 盒数据驱动模型因其不可解释性很难被应用于安全相关的领域中,并且大多方法都基于固定工况进行特征提取,对具有随 机性的实际工况不具有普适性。 因此,本文构建了一种基于随机工况数据的改进自适应模糊神将网络推理系统(ANFIS) 。 首先分析了容量衰减的影响因素,据此从电池监测数据中提取和筛选健康特征;其次系统内部利用激活机制简化系统结构, 并引入衰减系数更好地拟合电池单体特性;然后通过自适应粒子滤波算法优化模糊聚类中心;最后使用 NASA 随机工况数据 集验证了该系统的有效性,其容量估计 RMSE 为 3. 73% 。 与其他方法相比,本文提出的方法结果精度更高且具有一定的可 解释性。

    Abstract:

    The decline in lithium battery capacity can compromise its safety and stability, emphasizing the importance of accurate capacity estimation for better decision-making. However, prevailing black-box data-driven models face challenges in safety-critical applications due to their lack of interpretability. Additionally, these models often rely on fixed operating conditions for feature extraction, limiting their suitability for real-world scenarios with variable conditions. To address these issues, this paper presents an enhanced adaptive neural fuzzy inference system (ANFIS) designed to accommodate random operating conditions. Firstly, the factors influencing capacity degradation are analyzed, and relevant features are extracted and refined from battery measurement data. Subsequently, an activation mechanism simplifies the system structure, while an attenuation coefficient is introduced to tailor the model to battery cell characteristics. Further refinement is achieved through continuous optimization of fuzzy clustering centers using an adaptive particle filter algorithm. Validation of the system is conducted using the NASA random walk battery dataset, resulting in a capacity estimation root mean square error (RMSE) of 3. 73% . Comparative analysis demonstrates that the proposed system offers superior accuracy and a degree of interpretability when contrasted with other methods.

    参考文献
    相似文献
    引证文献
引用本文

刘彤宇,陆起涌,李 旦,张建秋,王开铟.随机工况下基于改进 ANFIS 的锂电池容量衰减实时估计[J].仪器仪表学报,2024,45(5):218-226

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-14
  • 出版日期:
文章二维码