基于双通道 Residual-LSTM 的 SINS / GNSS 组合导航算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH39 U675. 5

基金项目:

黑龙江省自然科学基金(YQ2021E011)、国家自然科学基金(52371368,51979047)资助


SINS / GNSS integrated navigation algorithm based on dual-channel Residual-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对全球导航卫星系统信号中断情况下 SINS / GNSS 组合导航系统无法持续进行误差校正的问题,提出一种基于双通 道 Residual-LSTM 的 SINS / GNSS 组合导航算法。 首先,考虑到 SINS 经度、纬度误差传播特性不同所导致的模型输入、输出信息 之间的非线性相关性差异化,构建具有不同权重系数的双通道长短期记忆神经网络模型结构,并引入遗忘信息共享机制自适应 地利用历史导航数据对经度、纬度信息进行拟合预测。 其次,针对深层神经网络存在的模型退化和梯度消失问题,在多层双通 道 LSTM 网络之间建立残差高速通道形成 Residual-LSTM 模型结构,以增加不同网络层次之间的信息传播路径。 最后,通过实 船数据验证本文所提算法的有效性。 实验结果表明,与基于常规智能方法的 SINS / GNSS 组合导航算法相比,所提组合导航算 法在 GNSS 信号中断期间经度误差降低了 51. 97% ,纬度误差降低了 31. 45% 。

    Abstract:

    In response to the issue of the inability of SINS / GNSS integrated navigation system to continuously correct errors in the event of a global navigation satellite system signal interruption, a dual-channel Residual-LSTM based SINS / GNSS integrated navigation algorithm is proposed. First, considering the nonlinear correlation difference between the input and output information of the model caused by the different transmission characteristics of SINS longitude and latitude errors, a dual-channel long and short-term memory neural network model structure with different weight coefficients was constructed. A adaptive forgetting information sharing mechanism was introduced to effectively use historical navigation data to fit and predict the longitude and latitude information. Second, in view of the model degradation and gradient vanishing problems existing in deep neural networks, a Residual-LSTM model structure is formed by establishing a Residual-LSTM high-speed channel between multi-layer and dual-channel LSTM networks to increase the information propagation paths between different network layers. Finally, the effectiveness of the proposed algorithm is verified by the real ship data. The experimental results show that compared with the SINS / GNSS integrated navigation algorithm based on conventional intelligence method, the proposed integrated navigation algorithm reduces the longitude error by 51. 97% and latitude error by 31. 45% during the GNSS signal interruption period. Keywords:SINS / GNSS integrated

    参考文献
    相似文献
    引证文献
引用本文

奔粤阳,王奕霏,李 倩,魏廷枭,周一帆.基于双通道 Residual-LSTM 的 SINS / GNSS 组合导航算法[J].仪器仪表学报,2024,45(4):325-333

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-15
  • 出版日期:
文章二维码