摘要:为了在有限训练样本情况下充分提取高光谱影像的空间光谱特征,提高分类精度,提出一种结合空洞卷积和密集网络 的高光谱影像分类方法。 首先,构建多尺度空洞特征提取模块,引入不同数量的空洞卷积层和普通卷积层通过级联的方式增大 模型的感受野,并提取多尺度特征。 然后,在多尺度空洞特征提取模块之间建立密集连接,实现特征复用的同时缓解梯度消失 问题,而模块内部无密集连接,避免构建深度网络而导致网络参数过多的问题。 最后,将得到的特征依次通过池化层,全连接层 和 Softmax 层完成分类。 另外,本文在全连接层后加入 dropout 正则化防止出现过拟合。 在 Indian Pines 和 WHU-Hi-Longkou 数 据集上与经典分类方法进行对比,本文方法 OA 分别为 98. 75% 和 98. 82% 。 实验结果表明,本文设计的网络模型在有限训练样 本情况下,分类效果最优。