基于 sEMG 的下肢连续运动切换态实时识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH70

基金项目:

国防科技创新特区(18-H863-31-ZD-002-002-05)、深圳市医学研究专项资金项目(B2302002)资助


Real-time recognition method of switching states of continuous lower limb movements based on sEMG
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在外骨骼与人进行自然人机交互(HRI)过程中,准确快速地识别下肢连续运动中的切换态至关重要。 切换态 sEMG 信 号即包含切换前后运动信息,又包含切换的瞬态信息,难以直接用于识别。 为了快速准确地识别切换态,本文提出了 FMICMDLACNN 的实时识别方法。 提出了自适应多分量瞬时频率估计方法来提升多元本征线性调频模态分解(MICMD)计算效率,提 出了分量能量惩罚因子提高 MICMD 分解精度,从而形成了快速多元本征调频模态分解(FMICMD)算法。 针对 FMICMD 分解后 sEMG 信号,构建了 LACNN 识别模型,实现了快速且准确的切换态识别。 本研究采集了 10 名受试者 8 种常见下肢连续运动切 换态下的 sEMG 信号进行实验验证。 结果表明,对于这 8 种切换态,该方法平均识别准确率为 98. 35% ,平均识别时间仅约 8 ms,均优于 CNN-LSTM、E2CNN 以及 CNN-BiLSTM 方法。 该方法具有较高的准确率和实时性,能够满足外骨骼与人体快速自 然交互的需求。

    Abstract:

    Accurately and rapidly identifying the switching states in continuous lower limb movements is crucial for natural humanrobot interaction ( HRI ) with exoskeletons. The switching state sEMG signals contain both pre-and post-switching movement information, as well as transient information related to the switching, making them difficult to directly use for recognition. In order to quickly and accurately identify the switching states, this paper proposes a real-time recognition method called FMICMD-LACNN. An adaptive multi-component instantaneous frequency estimation method is proposed to improve the computational efficiency of the multivariate intrinsic chirp mode decomposition ( MICMD) , and a component energy penalty factor is proposed to enhance the decomposition accuracy of MICMD, thus forming the fast multivariate intrinsic chirp mode decomposition (FMICMD) algorithm. For the sEMG signals decomposed by FMICMD, a LACNN recognition model was established to achieve fast and accurate switching states identification. This study collected sEMG signals from 10 subjects in 8 common lower limb continuous motion switching states for experimental verification. The results show that for these 8 switching states, the average recognition accuracy of this method is 98. 35% , and the average recognition time is only about 8 ms, which is better than the CNN-LSTM, E2CNN and CNN-BiLSTM methods. This method has high accuracy and real-time performance, and can meet the needs of fast and natural interaction between the exoskeleton and the human body.

    参考文献
    相似文献
    引证文献
引用本文

石 欣,敖钰民,范智瑞,余可祺,秦鹏杰.基于 sEMG 的下肢连续运动切换态实时识别方法[J].仪器仪表学报,2024,45(4):165-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-15
  • 出版日期:
文章二维码