面向变工况下工业流数据故障诊断的持续迁移学习系统
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133. 33 TP277

基金项目:

国家自然科学基金(52275157, 52205119)、江苏省自然科学基金(BK20220497)项目资助


Continuous transfer learning system for fault diagnosis of industrial stream data under variable operating conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器学习模型在智能故障诊断中取得了显著成功,但主要应用于静态场景。 在实际场景中,新的故障类别数据以流形 式不断产生,且数据分布随机械设备运行条件变化而发生变化,导致连续流数据具有非独立同分布的特征,这种面向非独立同 分布连续流数据的诊断问题被称为持续迁移诊断问题。 针对此问题,本文提出了一种基于持续迁移学习系统(CTLS)的故障诊 断方法。 该方法设计了域适应学习损失函数和持续迁移学习机制,能有效处理变工况下的工业流数据,无需重放旧类别数据便 能够能学习新类别知识。 此外,利用机械故障诊断案例评估该方法的性能,分析结果证明 CTLS 能够高效处理变工况条件下的 工业流数据,是一种极具潜力的解决实际工业问题的可靠工具。

    Abstract:

    Machine learning models have achieved remarkable success in intelligent fault diagnosis, but are mainly applied in static environments. In practical scenarios, new fault category data arrives continuously in the form of streams, and the distribution of the data changes due to changes in the operating conditions of the machinery and equipment, resulting in a continuous stream of data characterized by non-independent homogeneous distribution. This diagnostic problem of non-independently and identically distributed continuous stream data is called the continuous transfer diagnostic problem. To solve this problem, a continuous transfer learning system (CTLS) fault diagnosis method is proposed. The method includes a domain-adaptive learning loss function and a continuous transfer learning mechanism, which can efficiently handle industrial streaming data and learn new categories without replaying old category data. Moreover, a mechanical failure case evaluations validate the performance of the method, and analysis results show that CTLS can effectively handle industrial streaming data under different working conditions and is a promising tool for solving real industrial problems.

    参考文献
    相似文献
    引证文献
引用本文

石明宽,丁传仓,王 锐,黄伟国,朱忠奎.面向变工况下工业流数据故障诊断的持续迁移学习系统[J].仪器仪表学报,2024,45(4):10-16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-15
  • 出版日期:
文章二维码