自适应滤波协同图优化导航方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V249.32+8 TH89

基金项目:

国家自然科学基金(52202475)项目资助


Research on the adaptive filtering-collaborative graph optimization navigation method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统图优化导航方法中传感器测量协方差不准确导致估计精度下降的问题,本文提出了一种自适应滤波协同图优化导航方法。首先,构建INS/GNS/e-Compass组合导航系统的因子图模型;然后,利用测量方差自适应滤波对传感器测量信息进行预估,在滤波过程中更新相关传感器的测量协方差矩阵,并将预估结果作为变量节点加入因子图;最后,通过滑动窗口控制优化范围,对窗口内的变量节点进行非线性优化并输出最终的导航状态。仿真和实验结果表明,所提出的方法对传感器测量协方差的不匹配问题具有自适应性,能够在不同场景下实现高效可靠的导航定位。相比于传统图优化方法,该方法的定位精度提升了30%,计算效率提升了12%。

    Abstract:

    This article proposes an adaptive filtering-collaborative graph optimization navigation method to address the problem of inaccurate sensor measurement covariance in the traditional graph optimization navigation method, which leads to a decrease in estimation accuracy. Firstly, a factor graph model for the INS/GNSS/e-Compass integrated navigation system is established. Then, the adaptive filter is used to pre-estimate the sensor measurement information based on the measurement variance,the measurement covariance matrix of relevant sensors is updated during the filtering process, and thepre-estimated result is added to the factor graph as the variable node. Finally, the sliding window is used to control the optimization range, and the nonlinear optimization of the variable nodes within the sliding window is performed. Thus, the final navigation states are achieved. Simulation and experimental results show that the proposed method has adaptability to the mismatch of sensor measurement covariance and can achieve efficient and reliable navigation positioning in different environments. Compared with the traditional graph optimization method,this method improves the positioning accuracy by 30%and the calculation efficiency by 12%.

    参考文献
    相似文献
    引证文献
引用本文

赵 壮,马国梁.自适应滤波协同图优化导航方法研究[J].仪器仪表学报,2023,44(7):271-281

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-01
  • 出版日期:
文章二维码