基于数据融合和改进 MoCo的工业机器人抖动原因识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165*.3 TP18

基金项目:

国家自然科学基金(51975079)、重庆市教委科学技术研究项目(KIZD-M202200701)、重庆市研究生联合培养基地项目(JDLHPYJD2021007)、重庆市专业学位研究生教学案例库(JDALK2022007)、重庆市研究生科研创新项目(2021S0037)资助


Recognition of jitter causes for industrial robots based on data fusion and the improved MoCo
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    实际工程中工业机器人受关节控制参数不佳易引起末端抖动,抖动原因识别有助于定位关节异常及优化控制。而工业机器人抖动原因识别存在周期信号冗余度高、抖动方向多及抖动状态样本标签缺失的问题,故提出基于数据融合和改进动量对比学习(MoCo)的工业机器人科动原因识别方法。首先、对工业机器人末端各传感器数据依次进行数据降维、数据扩充、水平拼接融合及降维,构建充足且全面反映抖动方向及状态信息的融合样本。其中,数据融合前降维可降低周期样本冗余度及提升样本融合效率,数据融合后降维可避免融合样本过长导致模型训练复杂度增加。其次,在 MoCo前标记少量融合样本由正编码器分类通道输出监督信息,引导特征聚类。然后,改进对比学习策略,将正编码器提取的无标签融合数据特征与动量编码器保存的负样本特征的聚类中心进行对比,去除特征相似度最高的聚类中心以降低对比类别错误的假负样本干扰。并通过对称调换两个编码器的输入进行两次对比损失计算,完成编码器训练。最后,在编码器分类通道后添加 Sufmas 分类器完成工业机器人抖动原因识别。实验结果表明,所提方法在不同工况的工业机器人抖动原因识别准确率均在90%以上,证明了该方法的有效性。

    Abstract:

    In actual engineering,poor joint control parameters caneasily cause end-jitter in industrial robots. Recognizing the cause of the jitter can help locate joint anomalies and optimize control.However,there are problems with identifying the cause of jitter in industrial robots, such as high redundancy of cyclic signals, multiple jitter directions, and missing sample labels. Therefore, a method for recognizing the cause of jitter in industrial robots based on data fusion and the improved momentum contrast(MoCo)is proposed. Firstly, the data of each sensor at the end of the industrial robot are sequentially subjected to data dimensionality reduction, data expansion, horizontal splicing fusion, and dimensionality reduction to construct fusion samples that reflect sufficient and comprehensive jitter direction and state information. Data dimensionality reduction before fusion can reduce the redundancy of periodic samples and improve the efficiency of sample fusion,while dimensionality reduction after fusion can avoid the complexity of model training caused by excessively long fusion samples. Secondly, a small number of labeled fusion samples are supervised by the positive encoder classification channel output information before MoCo to guide feature clustering. Then,an improved contrastive learning strategy is implemented. The unlabeled fused data features extracted by the positive encoder arecompared with the cluster centersof the negative sample features saved by the momentum encoder, and the cluster centers with the highest feature similarity are removed to reduce the false negative sample interference of the comparison category error. And the encoder training is completed by symmetrically swapping the inputs of the two encoders for two comparison loss calculations. Finally, the cause ofjitter in industrial robots is identified by adding a Softmax classifier to the encoder classification channel. The experimental results showthat the recognition accuracy of the proposed method the causes of industrial robot jitter in different working conditions is larger than 90%, which shows the effectiveness of the method.

    参考文献
    相似文献
    引证文献
引用本文

陈仁祥,谢文举,徐向阳,陈 才,张 旭.基于数据融合和改进 MoCo的工业机器人抖动原因识别[J].仪器仪表学报,2023,44(7):112-120

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-01
  • 出版日期:
文章二维码