基于 RP-EKF 的无人机动力系统参数辨识
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH701

基金项目:

中国高校产学研创新基金(2021ZYB02002)项目资助


Parameter identification of UAV power system based on RP-EKF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机动力系统电池电压波动导致系统噪声大、辨识结果精度低的问题,本研究提出了一种基于反向预测-增广 卡尔曼滤波(RP-EKF)的无人机动力系统参数辨识方法。 首先构建增广参数矩阵,将压降噪声模型考虑入辨识环节,其次提出 反向预测卡尔曼滤波算法,设定新息平方比阈值,计算原始预测新息平方与反向预测新息平方的比值,通过对比预测新息比与 阈值完成过程噪声调整并实现估计模型修正。 实验结果表明,本文提出的基于 RP-EKF 的参数辨识方法,平均误差为 39. 22 rpm,均方根误差为 55. 85 rpm,平均相对偏差为 0. 85% ,相比于最小二乘算法与卡尔曼滤波算法,本文方法辨识结果平均 误差分别提高 41. 51% 和 22. 26% ,均方根误差提高 49. 63% 和 13. 0% ,平均相对偏差提高 41. 7% 和 22. 7% 。 本文提出的算法拥 有更高的辨识精度。

    Abstract:

    To address the serious battery voltage fluctuation of the UAV power system, which leads to the large system noise and the low accuracy of identification results, this study proposes a kind of UAV power system parameters identification method based on the reverse predicted-extended Kalman filter. Firstly, the voltage-drop noise model is considered into the noise identification by establishing the extended parameter matrix. Secondly, the reverse predicted Kalman filter algorithm is proposed. An innovation square of threshold value is set. The ratio of the original predicted innovation square and the reverse predicted innovation square ratio is calculated, which adjusts the process noise by comparing the predicted innovation ratio with threshold size. In this way, the estimation model of correction is realized. Experimental results show that the average error of the RP-EKF algorithm is 39. 22 rpm, the root mean square error is 55. 85 rpm, and the mean relative bias is 0. 85% . Compared with the least square algorithm and the Kalman filter algorithm, the average error index values of the identification results using the proposed method of this study is improved by 41. 51% and 22. 26% , respectively. The root mean square error is improved by 49. 63% and 13. 0% , and the mean relative bias was improved by 41. 7% and 22. 7% . Results show that the proposed algorithm has higher identification accuracy than the traditional identification methods.

    参考文献
    相似文献
    引证文献
引用本文

沈 跃,王德伟,孙志伟,沈亚运,刘 慧.基于 RP-EKF 的无人机动力系统参数辨识[J].仪器仪表学报,2023,44(4):314-321

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-12
  • 出版日期:
文章二维码