考虑行业关联度的工业用户用电异常识别研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM 714 TH 86

基金项目:

福建省自然科学基金(2022J01566)项目资助


Research on power consumption anomaly identification of industrial users considering industry relevance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业用户的行业属性对其用电模式的影响,本文提出一种考虑行业关联度的工业用户用电异常识别方法。 基于真 实工业用户用电负荷数据生成多个行业类别的典型负荷特征曲线。 运用改进灰色关联度算法计算电力用户用电特征与各个行 业典型用电特征之间的关联性,生成用户的行业关联特征;利用多头注意力机制(MHA)提取用户负荷序列特征,与行业关联特 征相结合,采用变分自动编码器(VAE)所提供的重构误差作为异常判定度量,建立 MHA-VAE 深度异常检测模型,实现对多种 类型工业用户用电异常的识别。 结果表明,引入用户的行业关联特征后异常检测的准确率、检出率和误检率分别为 96. 84% 、 98. 02% 、4. 35% ,与仅考虑用户负荷特征相比准确率提高 1. 06% ,误检率降低 2. 24% 。

    Abstract:

    In view of the influence of industrial users′ industry attributes on their power consumption patterns, a power consumption anomaly identification method considering industry relevance is proposed in this article. Based on the real industrial consumer power consumption data, the typical load characteristic curves of each industry are generated, and the improved grey correlation degree algorithm is used to calculate the relevance between the power consumption characteristics of power users and the typical power consumption characteristics of the industry. In this way, the industry relevance characteristics of users are achieved. The multi-head attention (MHA) is used to extract the features contained in load sequences. Combined with the industry relevance features, the reconstruction error provided by the variational autoencoder (VAE) is used as the anomaly decision metric to formulate the MHA-VAE depth anomaly detection model to identify various types of industrial users′ power consumption anomalies. Results show that, the accuracy, detection rate and false detection rate after introducing users′ industry relevance are 96. 84% , 98. 02% , and 4. 35% , respectively. Compared with only considering the load characteristics of users, the accuracy is increased by 1. 06% and the error detection rate is reduced by 2. 24% .

    参考文献
    相似文献
    引证文献
引用本文

陈 静,郑垂锭,李桂敏,江 灏,缪希仁.考虑行业关联度的工业用户用电异常识别研究[J].仪器仪表学报,2023,44(4):72-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-12
  • 出版日期:
文章二维码