联合自然梯度和 AdamW 算法的 RSF 图像分割模型
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH89

基金项目:

国家重点研发计划项目(2022YFF0706400)、国家自然科学基金(62171067)项目资助


RSF image segmentation model joint natural gradient and AdamW algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    关键零件内部复杂结构的精密测量是高端制造领域攻克的难题。 当采用工业 CT 技术实现对象内部结构精密测量时, 面临目标图像灰度不均匀性、边缘模糊、伪影等问题。 有鉴于此,本文研究了局部能量最小化模型(RSF)的图像分割方法,引入 自然梯度和 AdamW 算法分别提高了 RSF 模型的收敛速度和参数自适应性。 首先,在统计流形上计算自然梯度,提高梯度下降 效率和 RSF 模型收敛速度;其次,采用 AdamW 算法实现 RSF 模型的高斯核函数尺度大小自适应控制。 与经典 RSF 模型相比, 改进后的 RSF 模型迭代次数减少了 1 353 次,迭代次数降低约 76. 79% ,迭代时间减少约 43. 61% ,测针球面半径和航空燃油喷 嘴圆柱直径测量误差均较小,既保持了原模型亚像素分割精度,又大幅提高了模型收敛速度和鲁棒性。

    Abstract:

    The internal complex structure precision measurement of key part is a challenge in the field of high quality manufacturing. When the industrial CT technology is used to achieve precise measurement of the internal structure of the object, it faces problems of grayscale inhomogeneity, blurred edges, and artifacts of the target image. In view of these, the local energy minimization model (RSF) image segmentation method is investigated in this article. The natural gradient and AdamW algorithms are used to improve the convergence speed and parameter adaptivity of the RSF model, respectively. First, the approximate natural gradients are computed on the statistical manifold to improve gradient descent efficiency and RSF model convergence speed. Secondly, the AdamW algorithm is utilized to realize the adaptive control of the scale of the Gaussian kernel function of the RSF model. Compared with the classical RSF model, the improved RSF model reduces the number of iterations by 1 353, the number of iterations by about 76. 79% , the iteration time by about 43. 61% , and the low measurement errors of the probe-radius and the diameter of jet fuel nozzle cylinder, which not only maintains the sub-pixel segmentation accuracy of the original model, but also significantly improves the convergence speed and robustness of the model.

    参考文献
    相似文献
    引证文献
引用本文

蔡玉芳,王 涵,李 琦,王小军.联合自然梯度和 AdamW 算法的 RSF 图像分割模型[J].仪器仪表学报,2023,44(3):261-270

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-11
  • 出版日期:
文章二维码
×
《仪器仪表学报》
年底封账通知