高速摄影仪成像噪声去除方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH744

基金项目:

中国博士后科学基金(2022M720137)、基金委国家重大仪器研制项目(61727809)、国家重点研发计划项目(2019YFC0117801)资助


Research on the method of imaging noise removal for high-speed camera
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高速摄影仪在超高帧率下(>10 000 FPS)易产生噪声,该噪声分布复杂,难以获取与有噪图像完全对应的清晰图像。 针 对该问题,提出一种基于非理想配对图像的卷积去噪网络训练方法。 首先利用高速和低速摄影仪拍摄相同场景图像,获得有噪 图像及与其对应的非理想配对清晰图像;然后,建立基于卷积神经网络的深度去噪模型,结合亮度一致化和图像对齐方法,实现 非理想配对图像的监督学习,从而去除成像噪声;最后,引入模型量化技术将模型参数和激活值由 32 位浮点数量化为 8 位定点 数,降低模型大小、内存需求和运行时间。 实验结果表明,提出的去噪方法可有效去除高速摄影仪成像噪声,相比于其他方法, 去噪图像峰值信噪比提高 1. 96 dB,结构相似性提高 1. 95% ;通过模型量化,模型大小降低 4 倍,内存需求降低 45. 62% ,运行时 间降低 37. 5% 。

    Abstract:

    The high-speed camera tends to produce noise when it works under an ultra-high frame rate (>10 000 FPS). The distribution of the produced noise is complex. Thus, it is very difficult to obtain the noisy-clean image pairs. To address this problem, a training scheme for the convolutional denoising networks based on the non-ideal noisy-clean pairs is proposed. Firstly, the cameras with high and low frame rates are leveraged to capture the images of the same scenes, through which the noisy images and the corresponding non-ideal paired clean images are achieved. Then, a deep denoising model based on a convolutional neural network is formulated to achieve supervised learning with the non-ideal noisy-clean image pairs by utilizing the brightness consistency and image alignment methods, contributing to removing imaging noise. Finally, a model quantization technique is introduced to quantize the values of parameters and activations, which helps them to transform the 32 bit floating-point number to an 8 bit fixed-point number, and thus greatly reduces the model size, memory consumption, and running time. Experimental results show that the proposed denoising method can effectively remove the imaging noise of a high-speed camera. Compared with other methods, the peak signal-to-noise ratio and structural similarity of the denoised image are improved by at least 1. 96 dB and 1. 95% , respectively. In addition, with the help of the model quantization technique, the model size is reduced by 4 times, and the memory consumption and running time are decreased by 45. 62% and 37. 5% , respectively.

    参考文献
    相似文献
    引证文献
引用本文

陈怀安,卢小银,单奕萌,阚 艳,金 一.高速摄影仪成像噪声去除方法研究[J].仪器仪表学报,2023,44(2):211-220

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-07
  • 出版日期:
文章二维码