基于狄利克雷过程聚类的机器人演示学习研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH241. 2

基金项目:


Study of robot demonstration learning based on the Dirichlet process clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对演示学习中高斯混合模型参数估计效率低,泛化能力不足的问题,提出一种基于狄利克雷过程聚类和高斯混合模 型的复合动态运动基元算法。 为实现高斯混合模型参数的实时估计,使用基于距离阈值的狄利克雷聚类算法进行演示轨迹点 在线聚类,并引入 Welford 公式更新参数以提高参数估计效率。 获得轨迹分布特征后,使用动态运动基元进行高斯混合回归轨 迹的编码,以提高轨迹泛化能力。 为了验证算法的有效性,引入了轨迹可达性和相似性指标评价算法的学习泛化能力,设计了 基于手写体字母轨迹和机器人动觉示教的演示学习实验。 实验结果表明,所提复合动态运动基元算法参数估计平均时间仅 0. 052 ms,具备快速轨迹复现和泛化能力。

    Abstract:

    A composite dynamic movement primitives algorithm based on Dirichlet process clustering and Gaussian mixture model is proposed to address the problems of low efficiency of parameter estimation and insufficient generalization ability in demonstration learning. To achieve the real-time estimation of Gaussian mixture model parameters, the Dirichlet clustering algorithm based on the distance threshold is used to perform online clustering of demo trajectory points, and the Welford formula is introduced to update the parameters to improve the efficiency of parameter estimation. After obtaining the trajectory distribution characteristics, the Gaussian mixture regression trajectories are encoded by using the dynamic movement primitives to improve the trajectory generalization. To evaluate the effectiveness of the algorithm, trajectory reachability and similarity metrics are introduced to evaluate the learning generalization ability of the algorithm, and demonstration learning experiments based on handwritten letter trajectories and robot kinesthetic demonstrations are designed. Experimental results show that the average parameter estimation time of the proposed composite dynamic movement primitive algorithm is only 0. 052 ms, which has the ability of fast trajectory reproduction and generalization.

    参考文献
    相似文献
    引证文献
引用本文

吴晓敏,贺 苗,刘暾东,张馨月,邵桂芳.基于狄利克雷过程聚类的机器人演示学习研究[J].仪器仪表学报,2023,44(1):265-274

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-04
  • 出版日期:
文章二维码