融合注意力和多尺度特征的典型水面小目标检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH701

基金项目:

国家自然科学基金(52101377)、湖南省自然科学基金(2020JJ5672)、湖南省研究生科研创新(CX20220015)项目资助


Typical small target detection on water surfaces fusing attention and multi-scale features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决多场景复杂海况背景水面小目标检测存在的可利用特征少、纹理信息弱等问题,提升无人艇的环境感知能力,本 文提出一种融合注意力和多尺度特征的典型水面小目标检测算法。 首先,在网络的深层使用空洞空间金字塔池化模块融合目 标的全局先验信息。 其次,通过注意融合模块自适应地增强目标浅层空间位置和深层语义信息特征,提高网络的特征表示能 力。 最后,通过多尺度特征融合实现高性能的目标检测。 本文构建了典型水面小目标数据集,并基于无人艇开展了真实海况下 水面小目标检测的算法验证。 实验结果表明,该算法在无人艇 NVIDIA 平台检测速率达到 17 FPS,能准确识别水面小目标, mIoU 比原始特征金字塔网络算法提升 7. 58% ,平均检测精度提升 11. 41% ,达到 82. 36% 。

    Abstract:

    To address the problems of small targets detection with few available features and weak texture information in the context of complex sea conditions in multiple scenarios, and to improve the environmental perception capability of unmanned surface vehicles (USV), we propose a typical small targets detection method using attention mechanism and multi-scale features. Firstly, the global prior information of the target is fused in the deep layers of the network using atrous spatial pyramid pooling module. Secondly, the shallow spatial location and deep semantic information features of the target are adaptively enhanced by the attention fusion module to improve the feature representation capability of the network. Finally, the high performance target detection is achieved through multi-scale feature fusion. We construct a typical surface small target dataset, and the method is evaluated by experiments of surface small target detection under real sea conditions based on USV. Experimental results show that the proposed method in the NVIDIA platform reaches 17 FPS, which can accurately identify small target on the water surface. Compared with the original FPN algorithm, the mIoU is improved by 7. 58% , and the average detection accuracy is improved by 11. 41% to 82. 36% .

    参考文献
    相似文献
    引证文献
引用本文

童小钟,魏俊宇,苏绍璟,孙 备,左 震.融合注意力和多尺度特征的典型水面小目标检测[J].仪器仪表学报,2023,44(1):212-222

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-04
  • 出版日期:
文章二维码