基于深度测量的行人体态特征提取与再识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 41 TH789

基金项目:

国家自然科学基金(61873015)项目资助


Person shape feature extraction and reidentification based on depth measurement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    行人再识别是视觉监控系统的核心问题之一,然而传统基于彩色图像的特征提取方法难以用于极暗光照条件下的行人 再识别。 本文提出一种基于深度测量的行人体态特征提取方法,由于深度测量独立于光照条件,因此所提方法可以在极暗光照 条件下对行人目标进行有效识别。 由深度数据经过分割和滤波生成人体点云,将观测点云与初始人体模型进行配准,基于配准 后的点云对人体模型的体态参数和姿态参数进行联合估计,计算体态特征向量的欧式距离实现行人再识别。 在公开数据集和 实验室自采数据集上进行验证,计算 Rank-n、累计匹配曲线、平均精度均值等性能指标,其中在 Single shot 评估模式下 BIWI 数 据集的 Rank-1 可达到 70. 71% 、Rank-5 可达到 92. 32% ,结果表明本文所提算法可有效提高再识别精度。

    Abstract:

    Person re-identification is a fundamental problem in the smart video surveillance system. However, the traditional RGB-based feature extraction method cannot be used in dark environment. A new method for person shape feature extraction using depth measurement is proposed in this article. The depth data are independent from lighting condition. Therefore, the proposed method can be used for person re-id in the dark. Specifically, the point cloud of person is generated from depth data after segmentation and filtering. Then, the point cloud is registered to the initial human body model. The shape and pose parameters of the body model are estimated jointly based on the registered point cloud. Finally, the re-id is achieved by calculating the Euclidean distance in the vector space of shape parameters. The author applies this method on public and self-collected datasets in the laboratory to calculate performance indicators, including Rank-n, cumulative matching curve, and mean average precision, etc. Among the indicators, the Rank-1 of BIWI datasets in Single shot evaluation mode reaches 70. 71% and the Rank-5 of BIWI datasets is up to 92. 32% , which indicate that the proposed algorithm can effectively improve the re-recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

刘明洋,万九卿.基于深度测量的行人体态特征提取与再识别方法[J].仪器仪表学报,2023,44(1):201-211

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-04
  • 出版日期:
文章二维码