边缘计算生成式对抗网络差分进化滚动轴承特征识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133. 3 TH165+. 3 TH17

基金项目:

国家重点研发计划支持项目(2018YFB2003200,2018YFB2003500)、广东省重点领域研发计划项目(2019B010154001)、河北省创新能力提升计划项目(20540301D)资助


An edge computing method for differential evolution of generative adversarial networks rolling bearing feature recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滚动轴承是旋转机械系统中保障安全运行重要组成部分之一。 开展滚动轴承特征识别具有重要理论实际应用价值。 通常采用的深度学习滚动轴承特征识别方法,需要有监督标记数据或无监督故障数据参与训练,标签和故障数据不易获取,无 法满足滚动轴承特征识别需求。 本文提出了一种边缘计算生成式对抗网络差分进化滚动轴承特征识别 EC-DE 法。 该方法训 练过程采用健康数据训练生成式对抗网络,通过学习健康数据分布规律进行滚动轴承健康特征识别。 边缘端对比输入样本与 生成式对抗网络生成样本差异性进行识别,根据输入样本健康置信度提前退出,提高系统实时性;云端采用差分进化算法搜索 生成式对抗网络生成器输入潜空间,获得输入样本对应生成器输入潜变量,提高识别精度。 本文方法在 CWRU 滚动轴承公共 数据集上的识别正确率达 99. 8% 且对超参数不敏感,推理阶段耗时降低,具有实际生产应用价值。

    Abstract:

    Rolling bearing is one of the most important components of rotating machinery systems to ensure safe operation. It is important to carry out studies on rolling bearing feature recognition for theoretical and practical application. The commonly used deep learning rolling bearing feature recognition methods require supervised labeled data or unsupervised fault data to participate in the training, and labels of data and fault data are not easily accessible to meet the rolling bearing feature recognition requirements. This article proposes an edge computing method for differential evolution of generative adversarial networks rolling bearing feature recognition, namely the EC-DE method. The training process uses only healthy data to train the generative adversarial networks and learn the distribution pattern of healthy data. The edge node compares the distribution difference between the input samples and the generative samples of generative adversarial networks for identification and exits early according to the health confidence level to improve the system′ s real-time performance. The cloud node uses a differential evolution algorithm to search the generator latent space of the generative adversarial networks to obtain the latent variables corresponding to the input samples, which improves the recognition accuracy. The proposed method achieves 99. 8% accuracy on CWRU rolling bearing public data set and is insensitive to hyper-parameters, and the inference stage takes less time, which is valuable for a practical production application.

    参考文献
    相似文献
    引证文献
引用本文

张效天,王 雪,强振峰.边缘计算生成式对抗网络差分进化滚动轴承特征识别方法[J].仪器仪表学报,2023,44(1):112-120

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-04
  • 出版日期:
文章二维码