基于深度学习的射频电路空间辐射测试系统
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家重点研发计划专项(2019YFB1803305)资助


Deep learning-based over-the-air measurement system for RF circuitries
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对射频电路及天线的辐射性能测试需求,提出一种基于机器学习的射频电路空间辐射 OTA 测试系统。 系统引入深 度学习方法,利用三维空间有限测量数据训练一个全连接深度神经网络(FCDNN)模型,从而估计被测射频电路系统在三维空 间各个方向上的辐射性能。 为了权衡训练 FCDNN 模型所需的测试点数量与模型预测结果的准确度,进一步提出动态检验模型 准确度,逐步提升训练测试点数量,直到模型精度达到预设要求的解决办法。 实验结果表明,相比于现有 OTA 测试系统,所提 出的基于深度学习的测试系统只需约 60% 的测试点,就能精准重构被测射频电路的空间辐射性能,验证了该方案的准确性与 高效性,为行业提供了一种精确却低成本的空间辐射测试技术解决方案。

    Abstract:

    To effectively evaluate the radiation performance of RF front-end circuitries as demanded by the wireless industry, this article proposes a deep learning-based over-the-air (OTA) measurement system. By training a fully-connected deep neural network (FCDNN) with radiation measurements in some test points, we are able to accurately estimate the radiation performance of a RF circuitry in all 3D directions. To balance between the number of radiation measurements for FCDNN training and the estimation accuracy, we further propose to dynamically evaluate the accuracy of the trained model and increase the number of training radiation measurements, until the trained mode can satisfy a predefined accuracy. Experimental results show that the proposed OTA measurement system can accurately reconstruct the radiation performance of a RF circuitry with approximately 60% test points as compared to traditional methods. The proposed OTA measurement system can provide an accurate but cost-effective radiation measurement solution for the wireless industry.

    参考文献
    相似文献
    引证文献
引用本文

全 智,顾一帆.基于深度学习的射频电路空间辐射测试系统[J].仪器仪表学报,2022,43(12):248-257

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-04
  • 出版日期:
文章二维码
×
《仪器仪表学报》
年底封账通知