基于 K-medoids 分类的场地微振动振源识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911. 6 TH86

基金项目:

航空科学基金(ASFC-201951048002)项目资助


Identification method of site micro-vibration source based on K-medoids clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    各类精密实验室及半导体生产厂房都具有隔振设计,但周围仍可能出现一些超限振动,为找到经隔振设施后转变为微 振动的干扰源,需对检测信号进行微振盲源分类与识别;因瞬态微振动信号低频、低幅值、持续时间短的特性,传统振动信号分 析手段很难解决此问题,因此本文提出一种基于 K-medoids 分类的场地微振动振源识别方法。 将长期监测数据通过预处理后 进行端点检测算法截取瞬态微振动信号;对提取到的信号进行归一化梅尔滤波系数特征提取,构成特征矩阵;将特征矩阵进行 基于动态时间归整距离的 K-medoids 算法聚类,并对场地周围包含的振源数进行估计;对各分类结果进行混合高斯模型建模, 采集怀疑振源的数据,并由模型概率阈值判断识别,找出影响严重的干扰源。 利用某场地 24 h 长期监测数据进行实验,成功找 到该场地平均幅值最大和出现频次最高的两类干扰振源,分类正确率达到 90. 57% ,识别率达到 96. 8% ,证明了本文方法的有效 性和准确性。

    Abstract:

    Almost precision laboratories and semiconductor production plants have vibration isolated design. But, there may be still some vibration out of limit around. It turns into micro-vibration interference source after passing through vibration isolated installation. To find the interference sources around the site, it is necessary to classify and identify the detected blind sources signals. Due to the characteristics of low frequency, low amplitude, and short duration of the transient micro-vibration signal, traditional vibration signal analysis methods have difficulty to handle this. Thus, an identification method of micro-vibration source based on K-medoids is proposed. The endpoint detection algorithm is used to cut off transient micro-vibration signals from long-term data after preprocessing. Then, the normalized Mel filter coefficient (EN-Fbank) feature is extracted and used to constitute feature matrix. In addition, the data are clustered by K-medoids with dynamic time wrapping (DTW) distance. Finally, Gaussian mixture models are created for clustered data to identify the inspection data of the suspected vibration source with model probability threshold to find serious interference sources. In the experiment with 24 h data, two types of vibration sources with the largest average amplitude and the highest frequency of occurrence are found, and the classification accuracy reaches 90. 57% besides the identification rate reaches 96. 8% , which proves the effectiveness and accuracy of the method.

    参考文献
    相似文献
    引证文献
引用本文

张钧奕,余才志,王 鹏,孙长库.基于 K-medoids 分类的场地微振动振源识别方法[J].仪器仪表学报,2022,43(11):113-122

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-30
  • 出版日期:
文章二维码