2TPR&2TPS 并联机构的位姿误差建模与补偿研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP242 TH112

基金项目:

云南省重大科技专项(202002AC080001)资助


Research on pose error modeling and compensation of 2TPR & 2TPS parallel mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    位姿精度是评价机器人性能好坏的一个重要指标,建立有效的补偿算法是提高机器人位姿精度的重要保证。 本文以 一种 2TPR&2TPS 并联机器人为研究对象,建立了基于正解的误差模型,根据该误差模型得出了动、静平台位置参数误差及 驱动杆零点长度误差与机器人末端位姿误差的关系,同时建立了基于逆解的补偿算法。 通过粒子群算法对误差函数的最小 值寻优,得到了机器人驱动杆补偿量和位姿补偿量,仿真得出该机器人的平均位置精度提升了 98. 148% ;将驱动杆补偿量与 理想位姿对应的驱动杆长叠加作为机器人的驱动杆输入量进行实验验证,实验得出机器人的平均位置精度提升了 87. 457% ,补偿效果显著。

    Abstract:

    The pose accuracy is an important index to evaluate the performance of the robot. The establishing of an effective compensation algorithm guarantees the improvement of the robot pose accuracy. This article takes a 2TPR&2TPS parallel robot as the research object, and formulates an error model based on the positive solution. According to the error model, the influence relationship between the position parameter error of the dynamic and static platforms and the length error of the drive rod zero point on the robot end pose error is obtained. A compensation algorithm based on the inverse solution is established. The minimum value of the error function is optimized by the particle swarm algorithm, and the compensation amount of the robot′s drive rod and the pose compensation amount are achieved. The simulation shows that the average position accuracy of the robot is improved by 98. 148% , and the compensation amount of the drive rod corresponds to the ideal pose and the superposition of the driving rod length of the robot are adopted as the driving rod input of the robot for experimental verification. The experiment shows that the average position accuracy of the robot is improved by 87. 457% , and the compensation effect is remarkable.

    参考文献
    相似文献
    引证文献
引用本文

陈明方,何朝银,黄良恩,朱恩枭,张永霞.2TPR&2TPS 并联机构的位姿误差建模与补偿研究[J].仪器仪表学报,2022,43(11):94-103

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-30
  • 出版日期:
文章二维码